
T11/97-

T11/Project 1213-D/REV 1.3

HIGH-PERFORMANCE PARALLEL INTERFACE -

6400 Mbit/s Physical Layer

(HIPPI-6400-PH)
May 6, 1997

Secretariat:

Information Technology Industry Council (ITI)

ABSTRACT:  This standard specifies a physical-level, point-to-point, full-duplex, link interface for
reliable, flow-controlled, transmission of user data at 6400 Mbit/s, per direction, across distances of 1 km.
A parallel copper cable interface for distances of up to 50 m is specified.  Connections to a separate
longer-distance optical interface are provided. Small fixed-size micropackets provide an efficient, low-
latency, structure for small transfers, and a component for large transfers.

NOTE:

This is an internal working document of X3T11, a Technical Committee of Accredited Standards
Committee X3.  As such, this is not a completed standard.  The contents are actively being modified by
X3T11.  This document is made available for review and comment only.  For current information on the
status of this document contact the individuals shown below:

POINTS OF CONTACT:

Roger Cummings (X3T11 Chairman) Ed Grivna (X3T11 Vice-Chairman)
Distributed Processing Technology Cypress Semiconductor
140 Candace Drive 2401 East 86th Street
Maitland, FL  32751 Bloomington, MN  55425
  (407) 830-5522 x348, Fax: (407) 260-5366    (612) 851-5200,  Fax: (612) 851-5087
  E-mail:  cummings_roger@dpt.com    E-mail:  elg@cypress.com

Don Tolmie (HIPPI-6400-PH Technical Editor)
Los Alamos National Laboratory
CIC-5, MS-B255
Los Alamos, NM 87545
  (505) 667-5502, Fax: (505) 665-7793
  E-mail: det@lanl.gov



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

ii

Comments on Rev 1.3

This is a preliminary document undergoing lots of
changes.  Many of the additions are just place
holders, or are put there to stimulate discussion.
Hence, do not assume that the items herein are
correct, or final – everything is subject to change.
This page tries to outline where we are; what has
been discussed and semi-approved, and what
has been added or changed recently and
deserves your special attention.  This summary
relates to changes since the previous revision.
Also, previous open issues are outlined with a
single box, new open issues ones are marked
with a double bar on the left edge of the box.

Changes are marked with margin bars so that
changed paragraphs are easily found, and then
highlights mark the specific changes.  The list
below just describes the major changes, for detail
changes please compare this revision to the
previous revision.

Please help us in this development process by
sending comments, corrections, and suggestions
to the Technical Editor, Don Tolmie, of the Los
Alamos National Laboratory, at det@lanl.gov.  If
you would like to address the whole group
working on this document, send the Message to
hippi@network.com.

1. In 4.9, changed "…allow…" to "…support…".

2. In table 1, changed the byte numbers start at
o (instead of at 1), and changed the byte
numbers to include the payload bytes in the
Header micropacket.

3. Figure 6 was modified to be consistent with
the other HIPPI documents, i.e., removed
some text and added "-PH".

4. In 5.1, provided for an override of the
.Request / .Confirm primitive sequencing.

5. In 5.3, added the last paragraph about the
order of events in figure 7 not being
mandatory, i.e., the time sequence of the
.Confirm and data transfer.

6. In 5.3.1, added quite a bit of text under
"Issued" describing how you can have
multiple outstanding .Request primitives,
and about interleaving with the Admin
primitives.

7. In 5.3.2, added the VC number to the
64_TRANSFER.Confirm primitive to enable

outstanding 64_TRANSFER.Requests, one
on each VC.  In the last paragraph, added
the statement that the effect of the primitive
was to allow more .Request primitives.

8. All of 5.4 is new for the Admin service
primitives.  The intent is to specify them
similar to the TRANSFER primitives, but
keep them separate since the parameters
are quite different.  The Admin primitives
are interleaved with the TRANSFER
primitives.

9. In 6.2, changed "…Admin Request
Messages" to "…Admin Command
micropackets".  Changed "…Admin
Response Messages" to "…Admin Response
micropackets".

10. In 6.3.1, added the Note about Reset_ACK
and Initialize_ACK being ignored in normal
operation.

11. In 6.6.1, added the sentence " The LCRC
and ECRC shall not be generated or
checked for a training sequence (see 11.1)."
as an aid to the reader.

12. In 6.6.3, added "If ERROR ≠ 1, then…" at
the start of the 2nd paragraph.

13. In 6.6.3, clarified the text in the third
paragraph describing when the ECRC is
initialized to all ones.

14. Figure 14 was changed to show the D_ULA
and S_ULA as one chunk rather than split up
into separate parts of 32-bit words.

15. In 8.4, changed the note from "…or to
provide…" to "…and/or to provide…".

16. In 9.1.2, changed the text about logging the
TSEQ_Error to be conditional on "…unless
no micropackets with TYPE ≥ x'8' have been
accepted…".

17. In 9.1.3, in the second bullet, changed from
"…= 1 and the ECRC syndrome ≠ x'0000',
then…" to "…= 1, then…".

18. In 10.4, called out separate FRAME signal
bit patterns for 8-bit and 16-bit systems.

19. In 11.1, changed the skew budget from 10
ns to 8.5 ns.  Deleted the specific FRAME
pattern used to identify a training sequence.



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

iii

20. In 11.2, changed "If the link…" to "If the
Destination…" for clarification.  Changed the
text about the Dead-man timer to be
consistent with the text for other timers.

21. In 12.1, added that a Link Reset sequence
cannot be started if an Initialization
sequence is in progress.  In the last
paragraph, moved the text about initializing
the logged events from something that
happens during a Link Reset sequence to
something that must be in the proper state at
the end of the sequence.

22. In 12.2, called out the specific items that
occur during an Initialize sequence instead
of just saying that it was the same as for a
Link Reset.  Same sort of thing for the exit
from a Initialize.  Added that an Initialize,
from other than a power-on, clears the
logged events.

23. In 15.2, added "…"(12 signals wide in each
direction)…" to the first sentence to aid the
reader.  Deleted the text and table
specifying the component values, and added
text saying that appropriate values shall be
used.

24. In figure 21, changed the "λ" to "Optical
fiber".  Added a,b,c,and d subscripts for the
VTH generators.  Changed the title from
"Local electrical interface with optical
components" to "One signal (of 12 in each
direction) of the local electrical interface".

25. In 15.1, deleted the text specifying the
terminating resistor value.  Swapped the
order of the paragraphs so that they came in
the same order as the tables they reference.

26. In 15.2, changed "xx_Out_" to "xx_In_" in
two places.  Deleted the text specifying the
termination resistor value and whether it is
integrated in the receiver or a discrete
component.

27. In 15.3, changed "ma" to "mA" and changed
the activity monitor hysteresis time from 1
µs to 1 ms.  Changed the text of note 2 with
no change in intent.

28. In table 8, changed "Bit period" to "Baud
period" and its values to 1/2 of the previous
value.  Deleted the items for "Duty Cycle"
and "Duty Cycle Tolerance" under "DATA
and Control signals".  Corrected the "Duty
Cycle Tolerance" under "FRAME signal"
from "0.5%" to "0.25%".

29. In table 9, changed the Vo values from
"1500-1000 mVp-p" to "400-200 mVp-p".
Changed the value of TPWD from 100 to 60
ps.  Changed the value of TJITTER from 127
to 107 ps.  Deleted the item for "TJITTER" in
the top part of the table.  Added "(20% –
80%)" to the rise and fall time comments.

30. In table 10, changed the Vin value from
"2700-500 mVp-p" to "2700-250 mVp-p".
Changed the value of TPWD from 128 to 88
ps.  Changed the value of TJITTER from 312
to 290 ps.  Added "(20% – 80%)" to the rise
and fall time comments.  Deleted the items
for "Vin", "Imbalance", "Cin", "Rin", and "Rin" in
the bottom part of the table.  Moved "Fin" to
the top part of the table.  Deleted all except
the last note at the bottom of the table.

31. In 16, added "…(23 signals wide in each
direction…" to the first sentence as an aid to
the reader.  Added the paragraph about
which components are located in the
connector backshell (and whose values
depend on the cable length and parameters)
and which components are on the circuit
board and must have specific values.
Added the note to give hints as to why the
component values and placement was
chosen.

32. In table 11, split out the components with
specified values, and representative values
for the ones that are cable-specific.

33. In figure 22, moved the peaking RC network
to the cable side of the connector, changed
the subscripts on the resistors so that the "a"
components are on the board and the "b"
components are in the backshell, and added
the maximum distance from the driver to the
connector.

34. In 16.2, deleted the whole paragraph
specifying the component values.

35. In table 12, changed "Bit period" to "Baud
period" and its values to 1/2 of the previous
value (consistent with table 8).

36. In table 13, changed the value of TPWD from
100 to 60 ps.  Changed the value of TJITTER

from 127 to 107 ps.  Deleted the item for
"TJITTER" in the top part of the table.  Added
"(20% – 80%)" to the rise and fall time
comments.

37. In table 14, changed the value of TPWD from
128 to 88 ps.  Changed the value of TJITTER

from 312 to 290 ps.  Added "(20% – 80%)"



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

iv

to the rise and fall time comments.  Deleted
the items for "Vin", "Imbalance", "Cin", "Rin",
and "Rin" in the bottom part of the table.
Moved "Fin" to the top part of the table.
Deleted all except the last note at the
bottom of the table.

38. In 16.4, added the paragraph about the
equalizing network being in the backshell.

39. In table 15, changed the value of VXTALK

from "100" to "200" mV•ns.  Changed the
value of Channel Skew from "5000 ps" to
"TBD ns" and added a note that this needs
to be resolved.

40. In figure 24, changed the direction of all the
signals, i.e., _Out_ changed to _In_, and
_In_ changed to _Out_.

41. In Table 16, change the direction of all of the
signals, i.e., changed the direction of the
arrows.



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

v

Contents
Page

Foreword ......................................................................................................... ix

Introduction........................................................................................................ x

1 Scope ............................................................................................................. 1

2 Normative references...................................................................................... 1

3 Definitions and conventions ............................................................................ 2
3.1  Definitions ............................................................................................. 2
3.2 Editorial conventions .............................................................................. 2
3.3 Acronyms and other abbreviations ......................................................... 3

4 System overview ............................................................................................ 3
4.1  Links ..................................................................................................... 3
4.2  Virtual Channels.................................................................................... 3
4.3  Micropacket........................................................................................... 4
4.4  Message................................................................................................ 5
4.5  FRAME and CLOCK signals.................................................................. 5
4.6  Flow control........................................................................................... 6
4.7  Retransmission...................................................................................... 6
4.8  Check functions..................................................................................... 6
4.9  Local electrical interface (optional) ........................................................ 6
4.10  Copper cable physical layer (optional) ................................................. 6

5  Service interface............................................................................................ 8
5.1  Service primitives.................................................................................. 8
5.2  Sequences of primitives ........................................................................ 8
5.3  Data transfer service primitives ............................................................. 8
5.4  Admin service primitives ..................................................................... 10
5.5  Control service primitives .................................................................... 11
5.6  Status service primitives ..................................................................... 12

6  Micropacket contents ................................................................................... 14
6.1  Bit and byte assignments..................................................................... 14
6.2  Virtual Channel (VC) selector .............................................................. 14
6.3  Micropacket TYPEs............................................................................. 15
6.4  Sequence number parameters ............................................................ 15
6.5  Credit update parameters .................................................................... 16
6.6  Check functions................................................................................... 17

7  Message structure........................................................................................ 19
7.1  MAC header ........................................................................................ 19
7.2  LLC/SNAP header............................................................................... 20
7.3  Payload............................................................................................... 20

8 Source specific operations ............................................................................ 20
8.1  Credit update indications on Source side............................................. 20
8.2  ACK indications on Source side........................................................... 20
8.3  ACKs and credit updates to remote end .............................................. 21
8.4  Micropacket retransmission ................................................................. 21



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

vi

9  Destination specific operations..................................................................... 21
9.1  Link level processing ........................................................................... 21
9.2  Check for Message protocol errors ...................................................... 22
9.3  Generating ACKs ................................................................................ 23

10  Signal line encoding................................................................................... 24
10.1  Signal line bit assignments ................................................................ 24
10.2  Source-side encoding for dc balance................................................. 26
10.3  Destination-side decoding.................................................................. 26
10.4  FRAME signal ................................................................................... 27

11  Skew compensation ................................................................................... 27
11.1  Training sequences ........................................................................... 27
11.2  Training sequence errors ................................................................... 28

12  Link Reset and Initialization........................................................................ 29
12.1  Link Reset ......................................................................................... 29
12.2  Initialize............................................................................................. 29
12.3  Hold-off timer .................................................................................... 31

13  Link activity monitoring and shutdown........................................................ 31
13.1  Activity monitoring............................................................................. 31
13.2  Link shutdown ................................................................................... 31

14  Maintenance and control features .............................................................. 32
14.1  Timeouts ........................................................................................... 32
14.2  Logged events................................................................................... 32

15  Local electrical interface (optional) ............................................................. 33
15.1  Local electrical interface - output ....................................................... 33
15.2  Local electrical interface - input ......................................................... 34
15.3  Light present signal ........................................................................... 34

16  Copper cable interface (optional) ............................................................... 36
16.1  Copper cable interface - output.......................................................... 36
16.2  Copper cable interface - input............................................................ 36
16.3  CLOCK_2.......................................................................................... 37
16.4  Copper cable connectors ................................................................... 39
16.5  Copper cable specifications............................................................... 40



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

vii

Tables

Table 1 – CRC coverages in a 128-byte Message.............................................. 7
Table 2 – Micropacket contents summary ........................................................ 16
Table 3 – Signal line bit assignments in a 16-bit system................................... 24
Table 4 – Signal line bit assignments in an 8-bit system................................... 25
Table 5 – 4b/5b line coding .............................................................................. 26
Table 6 – Summary of timeouts ....................................................................... 32
Table 7 – Summary of logged events............................................................... 32
Table 8 – Local electrical signal timing at Source driver output ........................ 34
Table 9 – Local electrical interface, Source driver output ................................. 35
Table 10 – Local electrical interface, Destination receiver input ....................... 35
Table 11 – Copper cable interface components ............................................... 36
Table 12 – Copper cable interface signal timing at Source driver output .......... 37
Table 13 – Copper cable interface, Source driver output.................................. 38
Table 14 – Copper cable interface, Destination receiver input.......................... 38
Table 15 – Copper cable assembly electrical specifications ............................. 40
Table 16 – Cable layout ................................................................................... 41
Table A.1 – Parallel LCRC input bits ................................................................ 45
Table A.2 – Parallel ECRC input bits................................................................ 46
Table A.3 – 16-bit LCRC generator equations .................................................. 47
Table A.4 – 64-bit LCRC generator equations .................................................. 48
Table A.5 – 80-bit LCRC checker equations..................................................... 49
Table A.6 – 64-bit ECRC generator / checker equations................................... 50
Table A.7 – Copper cable equalization network................................................ 51



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

viii

Figures

Figure 1 – System overview............................................................................... 4
Figure 2 – HIPPI-6400-PH link showing signal lines ........................................... 4
Figure 3 – Logical micropacket format and naming conventions ........................ 5
Figure 4 – Message format ................................................................................ 5
Figure 5 – Reverse direction control information ................................................ 7
Figure 6 – HIPPI-6400-PH service interface....................................................... 8
Figure 7 – Data transfer service primitives......................................................... 8
Figure 8 – Admin service primitives ................................................................. 10
Figure 9 – Control service primitives................................................................ 12
Figure 10 – Status service primitives ............................................................... 13
Figure 11 – Control bits summary .................................................................... 14
Figure 12 – LCRC implementation example..................................................... 18
Figure 13 – ECRC implementation example .................................................... 18
Figure 14 – Header micropacket contents ........................................................ 19
Figure 15 – Detailed ULA layout ...................................................................... 19
Figure 16 – 16-bit system micropacket............................................................. 27
Figure 17 – 8-bit system micropacket............................................................... 27
Figure 18 – 16-bit system training sequence .................................................... 28
Figure 19 – 8-bit system training sequence ...................................................... 28
Figure 20 – Initialize and Link Reset sequences............................................... 30
Figure 21 – One signal (of 12 in each direction) of the local electrical interface 33
Figure 22 – One signal (of 23 in each direction) of the copper cable interface.. 36
Figure 23 – Connecting the overall shield ........................................................ 40
Figure 24 – Receptacle pin assignments.......................................................... 41
Figure 25 – Receptacle .................................................................................... 42
Figure 26 – Cable connector ............................................................................ 43
Figure A.1 – Encode / decode circuit example ................................................. 44
Figure A.2 – Parallel LCRC generator example................................................ 45
Figure A.3 – Parallel LCRC checker example .................................................. 46
Figure A.4 – Parallel ECRC example ............................................................... 47
Figure A.7 – Frequency response of RC equalizer network .............................. 51

Annex

A. Implementation comments .......................................................................... 44
A.1  4b/5b encoding and decoding ............................................................. 44
A.2  Frequency differences between Source and Destination ..................... 44
A.3  LCRC parallel implementation ............................................................ 45
A.4  ECRC parallel implementation ............................................................ 46
A.5  Undetected errors ............................................................................... 46
A.6  Cable equalization network ................................................................. 51



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

ix

Foreword (This foreword is not part of American National Standard X3.xxx-199x.)

This American National Standard specifies a physical-level, point-to-point, full-
duplex, link interface for reliable, flow-controlled, transmission of user data at
6400 Mbit/s, per direction, across distances of 1 km.  A parallel copper cable
interface for distances of up to 50 m is specified.  Connections to a separate
longer-distance optical interface are provided. Small fixed-size micropackets
provide an efficient, low-latency, structure for small transfers, and a component
for large transfers.

This standard provides an upward growth path for legacy HIPPI-based systems.

This document includes one annex which is informative and is not considered
part of the standard.

Requests for interpretation, suggestions for improvement or addenda, or defect
reports are welcome.  They should be sent to the X3 Secretariat, Information
Technology Industry Council, 1250 Eye Street, NW, Suite 200, Washington, DC
20005.

This standard was processed and approved for submittal to ANSI by Accredited
Standards Committee on Information Processing Systems, X3.  Committee
approval of the standard does not necessarily imply that all committee members
voted for approval.  At the time it approved this standard, the X3 Committee had
the following members:

(List of X3 Committee members to be included in the published standard by
the ANSI Editor.)

Subcommittee X3T11 on Device Level Interfaces, which developed this
standard, had the following participants:

(List of X3T11 Committee members, and other active participants, at the
time the document is forwarded for public review, will be included by the
Technical Editor.)



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

x

Introduction

This American National Standard specifies a physical-level, point-to-point, full-
duplex, link interface for reliable, flow-controlled, transmission of user data at
6400 Mbit/s, per direction, across distances of 1 km.  A parallel copper cable
interface for distances of up to 50 m is specified.  Connections to a separate
longer-distance optical interface are provided. Small fixed-size micropackets
provide an efficient, low-latency, structure for small transfers, and a component
for large transfers.

Characteristics of a HIPPI-6400-PH physical-layer interface include:

– User data transfer bandwidth of 6400 Mbit/s (800 MByte/s).

– A full-duplex link capable of independent full-bandwidth transfers in both
directions simultaneously.

– Four virtual circuits providing a limited multiplexing capability.

– A fixed size transfer unit, i.e., a 32-byte micropacket, for hardware
efficiency.

– A small transfer unit resulting in low latency for short Messages, and a
component for large transfers.

– Credit-based flow control that prevents buffer overflow.

– End-to-end, as well as link-to-link, checksums.

– Automatic retransmission to correct flawed data providing guaranteed, in-
order, reliable, data delivery.

– An ac coupled parallel electrical interface for driving parallel copper cable
over limited distances.

– An ac coupled parallel electrical interface for driving a local optical
interface for longer distances.



working draft proposed American National Standard ANSI X3.xxx-199x

1

High-Performance Parallel Interface –
6400 Mbit/s Physical Layer (HIPPI-6400-PH)

1 Scope

This American National Standard specifies a
physical-level, point-to-point, full-duplex, link
interface for reliable, flow-controlled, transmission
of user data at 6400 Mbit/s, per direction, across
distances of 1 km.  A parallel copper cable
interface for distances of up to 50 m is specified.
Connections to a separate longer-distance optical
interface are provided. Small fixed-size
micropackets provide an efficient, low-latency,
structure for small transfers, and a component for
large transfers.

Specifications are included for:

– automatic retransmission to correct flawed
data;

– the format of a small data transfer unit called
a micropacket;

– a Message structure that includes routing
information for network applications;

– end-to-end, as well as link-to-link,
checksums;

– the timing requirements of the parallel
signals;

– a parallel interface using copper coaxial
cable;

– connections to a separate local optical
interface;

– a link-level protocol tuned for a maximum
distance of 1 km.

2 Normative references

The following American National Standards
contain provisions which, through reference in
this text, constitute provisions of this American
National Standard.  At the time of publication, the
editions indicated were valid.  All standards are
subject to revision, and parties to agreements
based on this standard are encouraged to
investigate the possibility of applying the most
recent editions of the standards listed below.

ANSI X3.210-1992, High-Performance Parallel
Interface, Framing Protocol (HIPPI-FP)

ANSI X3.xxx-199x, High-Performance Parallel
Interface, Scheduled Transfer (HIPPI-ST)

ANSI X3.xxx-199x, High-Performance Parallel
Interface, 6400 Mbit/s Switch Control (HIPPI-
6400-SC)

ANSI X3.xxx-199x, High-Performance Parallel
Interface, 6400 Mbit/s Optical Interface (HIPPI-
6400-OPT)

ANSI/IEEE Std 802-1990, IEEE Standards for
Local and Metropolitan Area Networks: Overview
and architecture (formerly known as IEEE Std
802.1A, Project 802: Local and Metropolitan Area
Network Standard — Overview and Architecture)

ISO/IEC 8802-2:1989 (ANSI/IEEE Std 802.2-
1989), Information Processing Systems – Local
Area Networks – Part 2: Logical link control

American National Standard
for Information Technology –



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

2

3 Definitions and conventions

3.1  Definitions

For the purposes of this standard, the following
definitions apply.

3.1.1  acknowledge (ACK):  Confirmation that
the Destination has received the micropacket
without errors.

3.1.2  administrator:  A station management
entity providing external management control.

3.1.3  credit:  A credit corresponds to one
micropacket's worth of buffer space available in
the Destination's VC buffer.

3.1.4  Destination:  The receiving end of a
physical link.

3.1.5  Final Destination:  The end device that
receives, and operates on, the data payload
portion of the micropackets.  This is typically a
host computer system, but may also be a non-
transparent translator, bridge, or router.

3.1.6  link:  A full-duplex connection between
HIPPI-6400-PH devices.

3.1.7  log:  The act of making a record of an
event for later use.

3.1.8  Message: An ordered sequence of one or
more micropackets that have the same VC,
Originating Source, and Final Destination.
Messages are the basic transfer unit between an
Originating Source and a Final Destination.  The
first micropacket of a Message is a Header
micropacket.  The last micropacket, which may
also be the first micropacket, has the TAIL bit set.
(See 4.4.)

3.1.9  micropacket:  The basic transfer unit,
between a Source and Destination, consisting of
32 data bytes and 64 bits of control information.

3.1.10  optional:  Characteristics that are not
required by HIPPI-6400-PH.  However, if any
optional characteristic is implemented, it shall be
implemented as defined in HIPPI-6400-PH.

3.1.11  Originating Source:  The end device
that generates the data payload portion of the
micropackets.  This is typically a host computer
system, but may also be a non-transparent
translator, bridge, or router.

3.1.12  Source:  The sending end of a physical
link.

3.1.13  station management (SMT):  The
supervisory entity that monitors and controls the
HIPPI-6400-PH entity.

3.1.14  syndrome:  The value (should be zero)
obtained by exclusive ORing the calculated CRC
value with the CRC value received with the
micropacket.

3.1.15  Universal LAN MAC Address (ULA):  A
logical address stored in a Source or Destination
field that uniquely identifies an Originating
Source or Final Destination.  The ULA conforms
to the 48-bit MAC address specified by the IEEE
802 Overview Standard.

3.1.16  upper-layer protocol (ULP): The
protocols above the service interface.  These
could be implemented in hardware, software, or
they could be distributed between the two.

3.1.17  Virtual Channel (VC):  One of four
logical paths within each direction of a single link.

3.2 Editorial conventions

In this standard, certain terms that are proper
names of signals or similar terms are printed in
uppercase to avoid possible confusion with other
uses of the same words (e.g., FRAME).  Any
lowercase uses of these words have the normal
technical English meaning.

A number of conditions, sequence parameters,
events, states, or similar terms are printed with
the first letter of each word in uppercase and the
rest lowercase (e.g., Block, Source).  Any
lowercase uses of these words have the normal
technical English meaning.

The word shall when used in this American
National standard, states a mandatory rule or
requirement.  The word should when used in this
standard, states a recommendation.



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

3

3.2.1  Binary notation

Binary notation is used to represent relatively
short fields.  For example a two-bit field
containing the binary value of 10 is shown in
binary format as b'10'.

3.2.2  Hexadecimal notation

Hexadecimal notation is used to represent some
fields.  For example a two-byte field containing a
binary value of b'11000100 00000011' is shown in
hexadecimal format as x'C403'.

3.3 Acronyms and other abbreviations

ACK acknowledge indication
CR credit amount parameter
CRC cyclic redundancy check
DSAP Destination Service Access Protocol
ECRC end-to-end CRC
HIPPI High-Performance Parallel Interface
Hz Hertz = 1 cycle per second
K kilo (210 or 1024)
LCRC link CRC
LLC Logical Link Control
lsb least significant bit
M mega (220 or 1,048,576)
MAC Media Access Control
ms milliseconds
msb most significant bit
ns nanoseconds
p-p peak to peak
ps picoseconds
RSEQ receive sequence number
SMT station management
SNAP SubNetwork Access Protocol
SSAP Source Service Access Protocol
TSEQ transmit sequence number
ULA Universal LAN Address
ULP upper-layer protocol
VC Virtual Channel
VCR Virtual Channel Credit selector
µs microseconds
ΩΩ ohms

4 System overview

This clause provides an overview of the structure,
concepts, and mechanisms used in HIPPI-6400-
PH.  Figure 1 gives an example of a HIPPI-6400
system.

4.1  Links

HIPPI-6400-PH defines a point-to-point physical
link for transferring micropackets.  The physical
links, as shown in figure 2 between a local end
and a remote end, are bi-directional.  The logical
links are simplex, i.e., the data inbound and
outbound are completely separate.  Some control
information, e.g., credit, flows in the reverse
direction, and it is included in the micropackets
flowing in the reverse direction.  This is why the
physical links must be bi-directional with
information flowing in both directions
simultaneously.

A link is composed of two Sources that transmit
information, and two Destinations that receive
information.  Each end of a link has a Source and
a Destination.

The data path is 16 bits wide for the copper
implementation, and is eight bits wide for a fiber
implementation.  The control path is one-fourth
the width of the data path, e.g., the control path
for the copper implementation is 4 bits wide.
CLOCK, CLOCK_2, and FRAME are individual
signals carried on separate conductors.  The
CLOCK_2 signal is only used in 16-bit systems.

4.2  Virtual Channels

Four Virtual Channels, VC0, VC1, VC2, and VC3
are available in each direction on each link.  The
VCs are assigned to specific Message sizes and
transfer methods.

All of the micropackets of a Message are
transmitted on a single VC, i.e., the VC number
does not change as the micropackets travel from
the Originating Source to the Final Destination
over one or more links.  Messages to a Final
Destination are delivered in order on a single VC.
Multiple messages may be out of order if sent
over different VCs—even if the VCs are in the
same physical link.  The VCs provide a
multiplexing mechanism which can be used to
prevent a large Message from Blocking a small
Message until the large Message has completed.



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

4

D
HIPPI-6400

Node

HIPPI-800
Node

= Destination

= Final Destination

= Source

= Originating Source

= HIPPI-6400

= Other
Translation

Function

Other Media
Node

HIPPI-6400
Switch

HIPPI-6400
Node

SD

SD

SD

S

S SD D

Translation
Function

D DS S

D DS S

S SD D

D

S

D

S

Figure 1 – System overview

DATA

CONTROL

FRAME

CLOCK

DATA

CONTROL

FRAME

CLOCK

16(8)

4(2)

16(8)

4(2)

DestinationSource

SourceDestination

DATA

CONTROL

FRAME

CLOCK

DATA

CONTROL

FRAME

CLOCK

(Numbers in parenthesis are for an 8-bit system.
CLOCK_2 is only used in 16-bit systems.)

CLOCK_2 CLOCK_2

CLOCK_2CLOCK_2

1(1)

1(1)

1(0)

1(1)

1(1)

1(0)

Remote endLocal end

Figure 2 – HIPPI-6400-PH link showing signal
lines

4.3  Micropacket

Micropackets are the basic transfer unit from
Source to Destination on a link.  As shown in
figure 3 a micropacket is composed of 32 data
bytes and 64 bits of control information.  At 6400
Mbit/s a micropacket is transmitted every 40 ns,
with Null micropackets transmitted when other
micropackets are not available.  Credit and
retransmit operations are performed on a
micropacket basis.

The 64 bits of control information in each
micropacket includes parameters for:

– selecting a VC;

– detecting missing micropackets;

– denoting the types of information in the
micropacket;

– marking the last micropacket of a Message;

– signaling that the Message was truncated at
its originator, or damaged en-route;

– passing credit information from the
Destination to the Source;

– Link-level and end-to-end checksums.



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

5

d31.0d31.2d31.4d31.6d30.0d30.2d30.4d30.6

d00.0d00.2d00.4d00.6

c00c02c04c06c08c10c12c14c56c58c60c62

Data byte DB31

72 2 2 2 2 2 2 26 5 4 3 2 1 0

Data byte DB30

Data byte DB00

d31.1d31.3d31.5d31.7d30.1d30.3d30.5d30.7

d00.1d00.3d00.5d00.7

7
2 2 2 2 2 2 2 2

6 5 4 3 2 1 0

c01c03c05c07c09c11c13c15c57c59c61c63

........

32 Data bytes (256 bits)

64 Control bits

d01.0d01.2d01.4d01.6

Data byte DB01

d01.1d01.3d01.5d01.7

Naming conventions:
Data bytes are labeled capital DB and a two-digit number, e.g., DB00.
In a parameter that uses multiple bytes, the most-significant byte is the lowest-numbered byte.
Data bits are labeled lower case d, a two-digit byte number, and a one-digit bit number, e.g., d31.7.
Control bits are labeled lower case c and a two-digit number, e.g., c00.
In a parameter that uses multiple bits, the most-significant bit is the highest-numbered bit.

Figure 3 – Logical micropacket format and naming conventions

4.4  Message

As shown in figure 4, a Message is an ordered
sequence of one or more micropackets which
have the same VC, Originating Source, and Final
Destination.  The first micropacket of a Message,
i.e., the Header micropacket, contains
information used to route through a HIPPI-6400
fabric.  The last micropacket of the Message is
marked with the TAIL bit.

1

2

c63–c00Header information

1st 32 bytes of Mesage data

2nd 32 bytes of Message data

Last bytes of Message data

c63–c00

c63–c00

c63–c00n

3
.......

.......

Micropacket transmission order

Figure 4 – Message format

4.5  FRAME and CLOCK signals

The FRAME signal, carried on a separate signal
line, marks a micropacket's beginning. Both
edges of either the CLOCK or CLOCK_2  signals,
also carried on separate signal lines, are used for
strobing the data.  The data, control, and FRAME
signals from a Source are synchronous with that
Source's CLOCK and CLOCK_2 signals.  The
CLOCK rate is dependent on the width of the
data bus, e.g., a 16-bit data bus utilizing 4b/5b
encoding requires the CLOCK line to run at 250
MHz and each data and control line may
transition every 2 ns.



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

6

4.6  Flow control

Link-level credit-based flow control is used
between a Source and Destination.  As shown in
figure 5, the credits are assigned on a VC basis,
i.e., VC0's credits are separate from VC1's
credits.  The Destination end of a link grants
credits to match the number of free receive
buffers for a particular VC.  The Source end of
the link consumes credits as it moves
micropackets from the VC Buffers to the Output
Buffer.  Note that flow control is on a link basis,
i.e., hop-by-hop.

4.7  Retransmission

Retransmission is performed to correct flawed
micropackets (see 8.4).  Go-back-N retransmis-
sion is used, i.e., if an error is detected then the
flawed micropacket, and all micropackets
transmitted after it, are retransmitted.  The CRCs
in each micropacket are checked at the
Destination side of a link; at the Input Buffer in
figure 5.  Correct micropackets are
acknowledged, flawed micropackets are
discarded.  Note that retransmission is
independent of the VC used, and also
independent of the credit information, i.e.,
retransmission occurs between the Output and
Input Buffers in figure 5 while VC and credit
information pertains only to the VC Buffers.
Retransmission is on a link basis, i.e., hop-by-
hop.

4.8  Check functions

As shown in table 1, two 16-bit cyclic redundancy
checks (CRCs) are used, and they use different
polynomials.  The end-to-end CRC (ECRC)
covers the data bytes of all of the micropackets in
a Message, i.e., the Header micropacket and all
of the Data micropackets (if any) up to this point
in a Message.  The ECRC does not cover the

control bits.  The ECRC is unchanged from the
Originating Source to the Final Destination.  The
ECRC is accumulated over an entire Message,
i.e., it is not re-initialized for intermediate Data
micropackets (see 6.6.3).  Note that in table 1,
the second micropacket's ECRC covers the
information in the first and second micropacket;
the third micropacket's ECRC covers the
information in the first, second, and third
micropacket, etc.

The link CRC (LCRC) covers all of the data and
control bits of a micropacket, with the exception
of itself.  The LCRC is initialized for each
micropacket, and must be calculated fresh for
each link since other control fields change.

The combination of two 16-bit CRCs provides a
stronger check than a single 16-bit CRC for link-
level checking of individual micropackets.  In
addition, the 16-bit ECRC provides checking over
a whole Message.

4.9  Local electrical interface (optional)

The optional local on-board electrical interface
(see clause 15) provides a connection to a
separately specified optical interface (see HIPPI-
6400-OPT) for longer distances.  Note that the
TSEQ and RSEQ parameter sizes in this
standard support full speed operation at distances
up to 1 km.

4.10  Copper cable physical layer (optional)

The optional HIPPI-6400-PH copper cable variant
(see clause 16) uses a cable with 46 conductor
pairs, 23 in each direction, and an overall shield.
The maximum length is dependent upon the
quality of the cable.  The signals are ac coupled
to the cable to accommodate some difference in
the ground potential between the equipment.



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

7

VC0 Buffer

VC2 Buffer

VC3 Buffer

VC1 Buffer

VC0 Buffer

VC2 Buffer

VC3 Buffer

VC1 Buffer

ACK(seq)

DestinationSource

TSEQ

RSEQ

Credits are consumed as a
micropacket moves from the
VCn Buffer to the Output Buffer.

Output
Buffer

Input
Buffer

ACKs are generated independent of the VC
number, and sent to the Source in the reverse
direction micropacket control information.

credit (VC,amount)

Credits are generated, on a VC basis when data
exits from the VC buffer, and sent to the Source in
the reverse direction micropacket control information.

Figure 5 – Reverse direction control information

Table 1 – CRC coverages in a 128-byte Message

Micropacket
number

Data Bytes
DB00 – DB31

contents

ECRC
coverage

LCRC
coverage

1 Header, Bytes 0 - 7 Header, Bytes 0 - 7 Header, Bytes 0-7, c00 – c47

2 Bytes 8 - 39 Header, Bytes 0 – 39 Bytes 8 – 39, c00 – c47

3 Bytes 40 - 71 Header, Bytes 0 – 71 Bytes 40 – 71, c00 – c47

4 Bytes 72 - 103 Header, Bytes 0 – 103 Bytes 72 – 103, c00 – c47

5 Bytes 104 - 135 Header, Bytes 0 – 135 Bytes 104 – 135, c00 – c47



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

8

5  Service interface

This clause specifies the services provided by
HIPPI-6400-PH.  The intent is to allow ULPs to
operate correctly with this HIPPI-6400-PH.  How
many of the services described herein are chosen
for a given implementation is up to that
implementor; however, a set of HIPPI-6400-PH
services must be supplied sufficient to satisfy the
ULP(s) being used.  The services as defined
herein do not imply any particular
implementation, or any interface.

Figure 6 shows the relationship of the HIPPI-
6400-PH interfaces.

HIPPI-6400
-PH

Upper-layer
protocols

 (64_...)

Station
management

(SMT)

 (64SM_...)

Figure 6 – HIPPI-6400-PH service interface

5.1  Service primitives

The primitives, in the context of the state tran-
sitions in clause 5, are declared required or
optional.  Additionally, parameters are either
required, conditional, or optional.  All of the
primitives and parameters are considered as
required except where explicitly stated otherwise.

HIPPI-6400-PH service primitives are of four
types.

– Request primitives are issued by a service
user to initiate a service provided by the HIPPI-
6400-PH.  In this standard, unless otherwise
noted, a second Request primitive of the same
name shall not be issued until the Confirm for
the first request is received.

–Confirm primitives are issued by the HIPPI-
6400-PH to acknowledge a Request.

– Indicate primitives are issued by the HIPPI-
6400-PH to notify the service user of a local

event.  This primitive is similar in nature to an
unsolicited interrupt.  Note that the local event
may have been caused by a service Request.
In this standard, second Indicate primitive of
the same name shall not be issued until the
Response for the first Indicate is received.

– Response primitives are issued by a service
user to acknowledge an Indicate.

5.2  Sequences of primitives

The order of execution of service primitives is not
arbitrary.  Logical and time sequence
relationships exist for all described service primi-
tives.  Time sequence diagrams are used to illus-
trate a valid sequence.  Other valid sequences
may exist.  The sequence of events between peer
users across the user/provider interface is illus-
trated.  In the time sequence diagrams the HIPPI-
6400-PH users are depicted on either side of the
vertical bars while the HIPPI-6400-PH acts as the
service provider.

5.3  Data transfer service primitives

These primitives, as shown in figure 7, shall be
used to transfer ULP data from an Originating
Source ULP to a Final Destination ULP.  The
ULP data shall be carried in a Message, with
HIPPI-6400-PH MAC and IEEE 802.2 LLC/SNAP
headers preceding the ULP payload data (see
figures 4 and 13, and clause 7).  The ULP data
shall immediately follow the LLC/SNAP header.

While figure 7 shows the data being transferred
after the 64_TRANSFER.Confirm is issued, this
ordering is not mandatory.

HIPPI-
6400-PH

Originating
Source ULP

Final
Destination ULP

64_TRANSFER
.Request

64_TRANSFER
.Confirm 64_TRANSFER

.Indicate

64_TRANSFER
.Response

Figure 7 – Data transfer service primitives



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

9

5.3.1  64_TRANSFER.Request

Issued by the Originating Source's ULP to request
a data transfer.

Semantics – 64_TRANSFER.Request (
D_ULA,
S_ULA,
VCn,
EtherType,
Length,
Data)

The D_ULA (Destination address) shall be
placed directly in the MAC header (see 7.1).

The S_ULA (Source address), if allowed by
S_ULA_Allowed = true (see 5.5.1), shall be
placed directly in the MAC header (see 7.1).  If
S_ULA_Allowed = false, then the HIPPI-6400-
PH entity shall use its native S_ULA address.
Note that by allowing the ULP to specify the
Source address, a server can use a "spoof"
address, e.g., to provide a broadcast service.
Whether the ULP is allowed to set the S_ULA
or not is controlled by the local station
management entity through the
S_ULA_Allowed flag (see 5.5.1).

VCn shall be the Virtual Channel (see 6.2) that
the message shall be sent on.  If the Message
size violates the Virtual Channel size
limitations, then the Request shall be rejected.

EtherType, specifying the data type (see 7.2),
shall be placed directly in the LLC/SNAP
header.

Open Issue – Rather than just pass the EtherType,
would it be preferable to pass the whole LLC/SNAP
header from/to the ULP?

Length shall specify the number of bytes of
ULP payload data.  Note that the length
parameter in the MAC header (see clause 7)
M_len = Length + 8 to account for the
LLC/SNAP header.

Data shall be the ULP payload data.

Issued – The Originating Source ULP issues this
primitive to the HIPPI-6400-PH entity to request
the transfer of the ULP payload data to the Final
Destination.  64_TRANSFER.Requests shall be
interleaved with 64SM_ADMIN.Requests (see

5.4.1) that use the same VC.  For example, a
64_TRANSFER.Request for VC1 shall not be
issued if a 64SM_ADMIN.Request is in process
on VC1 (i.e., has not been acknowledged with a
64SM_ADMIN.Confirm).  Note that
64_TRANSFER.Requests may be issued for
each of the four VCs before receiving a
64_TRANSFER.Confirm for any of them, i.e., the
.Confirm / .Request interlock is on a per-VC
basis.

Effect – The HIPPI-6400-PH entity shall accept
the data for transmission and build the Message
with the appropriate MAC and LLC/SNAP
headers.  If the Message size violates the Virtual
Channel limitations, then this transfer request
shall be rejected (see 5.3.2); otherwise the
Message shall be sent.  If the Message does not
end on a micropacket boundary then padding
shall be provided (see clause 7).

5.3.2  64_TRANSFER.Confirm

This primitive acknowledges the 64_TRANSFER
.Request from the Originating Source ULP.

Semantics – 64_TRANSFER.Confirm (
VCn,
Status)

VCn shall be Virtual Channel (see 6.2) that the
Message was sent on.

Status shall be:

– Accept – The Message has been accepted
for transmission.

– Reject – The Message:

– violated the Virtual Channel size
limitations (see 6.2), and has been
rejected;

– or, was unable to be transmitted.

Issued – The HIPPI-6400-PH shall issue this
primitive to the Originating Source ULP to
acknowledge the 64_TRANSFER.Request on this
VC.

Effect – Another 64_TRANSFER.Request, or a
64SM_ADMIN.Request, is enabled on this VC.



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

10

5.3.3  64_TRANSFER.Indicate

This primitive indicates to the Final Destination
ULP that a Message has been received from the
Originating Source.

Semantics – 64_TRANSFER.Indicate (
D_ULA,
S_ULA,
EtherType,
Status,
Length,
Data)

The D_ULA shall be the value received in the
MAC header (see 7.1).

The S_ULA shall be the value received in the
MAC header (see 7.1).

EtherType shall be the value received in the
LLC/SNAP header (see 7.2).

Status denotes whether the data payload being
delivered was received with errors.  Status
includes but is not limited to:

– ECRC errors (see 9.1.3);

– missing end of Message (see 9.2.3).

Length shall be the payload length as specified
in the MAC header, i.e., Length = M_len – 8.

Data shall be the ULP payload data with any
pad removed.

Issued – The Final Destination HIPPI-6400-PH
shall issue this primitive to the Final Destination
ULP when a Message has been received.

Effect – Unspecified

5.3.4  64_TRANSFER.Response

This primitive acknowledges a 64_TRANSFER
.Indicate.

Semantics – 64_TRANSFER.Response

Issued – The Final Destination ULP issues this
primitive to acknowledge the receipt of the
64_TRANSFER.Indicate.

Effect – The HIPPI-6400-PH Final Destination is
enabled to issue another
64_TRANSFER.Indicate.

5.4  Admin service primitives

These primitives, as shown in figure 8, shall be
used to transfer Admin micropackets (see 6.3.6)
from the local station management (SMT) entity
to the Destination SMT entity on the other end of
the link.  Admin micropackets, as defined in
HIPPI-6400-SC, are used for support and
initialization of HIPPI-6400 links, elements, and
systems.  While the Control service primitives
(see 5.5) are used to affect the local interface,
the Admin service primitives are used to affect
the interface on the other end of the link.

While figure 7 shows the Admin micropacket
being transferred after the 64SM_ADMIN.Confirm
is issued, this ordering is not mandatory.

HIPPI-
6400-PH

Local SMT Other End
SMT

64SM_ADMIN
.Request

64SM_ADMIN
.Confirm 64SM_ADMIN

.Indicate

64SM_ADMIN
.Response

Figure 8 – Admin service primitives

5.4.1  64SM_ADMIN.Request

Issued by the local SMT to transfer an Admin
micropacket to the Destination SMT.

Semantics – 64SM_ADMIN.Request (
VCn
Admin micropacket)

VCn shall be the Virtual Channel (see 6.2) that
the Admin micropacket shall be sent on.
Admin requests are sent on VC1; Admin
responses are sent on VC2.  (See HIPPI-6400-
SC.)

The Admin micropacket contents shall be as
defined in HIPPI-6400-SC.

Issued – The local SMT issues this primitive to
the HIPPI-6400-PH entity to request the transfer
of an Admin micropacket to the Destination SMT.



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

11

64SM_ADMIN.Requests shall be interleaved with
64_TRANSFER.Requests (see 5.3.1) that use the
same VC.  For example, a
64SM_ADMIN.Request for VC1 shall not be
issued if a 64_TRANSFER.Request is in process
on VC1 (i.e., has not been acknowledged with a
64_TRANSFER.Confirm).  Note that
64SM_ADMIN.Requests may be issued for both
VC1 and VC2 before receiving a
64SM_ADMIN.Confirm for either of them, i.e., the
.Confirm / .Request interlock is on a per-VC
basis.

Effect – The HIPPI-6400-PH entity shall accept
the Admin micropacket for transmission.  Note
that the MAC and LLC/SNAP headers are not
used in Admin micropackets.

5.4.2  64SM_ADMIN.Confirm

This primitive acknowledges the 64SM_ADMIN
.Request from the local SMT entity.

Semantics – 64SM_ADMIN.Confirm (
VCn,
Status)

VCn shall be Virtual Channel (see 6.2) that the
Admin micropacket was sent on.

Status shall be:

– Accept – The Admin micropacket has
been accepted for transmission.

– Reject – The Admin micropacket was
unable to be transmitted.

Issued – The HIPPI-6400-PH shall issue this
primitive to the local SMT to acknowledge the
64SM_ADMIN.Request on this VC.

Effect – Another 64SM_ADMIN.Request, or a
64_TRANSFER.Request, is enabled on this VC.

5.4.3  64SM_ADMIN.Indicate

This primitive indicates that an Admin
micropacket has been received from the other
end of the link.

Semantics – 64SM_ADMIN.Indicate (
Status,
Admin micropacket)

Status denotes whether the Admin micropacket
being delivered was received with errors.
Status includes but is not limited to:

– ECRC errors (see 9.1.3);

– missing TAIL bit (see 9.2.1);

– missing end of Message (see 9.2.3)

Admin micropacket is the information for
delivery to the local SMT entity.

Issued – The HIPPI-6400-PH entity shall issue
this primitive to the local SMT when it receives
an Admin micropacket.

Effect – Unspecified

5.4.4  64SM_ADMIN.Response

This primitive acknowledges a
64SM_ADMIN.Indicate.

Semantics – 64SM_ADMIN.Response

Issued – The SMT entity issues this primitive to
acknowledge the receipt of the
64SM_ADMIN.Indicate.

Effect – The HIPPI-6400-PH is enabled to issue
another 64SM_ADMIN.Indicate.



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

12

5.5  Control service primitives

These primitives, as shown in figure 9, may be
used by the local station management (SMT)
entity to set parameters and control the local
HIPPI-6400-PH entity.

HIPPI-
6400-PHLocal SMT

Other End
SMT

64SM_CONTROL
.Request

64SM_CONTROL
.Confirm

Figure 9 – Control service primitives

5.5.1  64SM_CONTROL.Request

Issued by the local SMT to set parameters, or
otherwise control the local HIPPI-6400-PH entity.
Several functions are specified and others are left
to specific implementations.

Semantics – 64SM_CONTROL.Request (
Command,
Command_Parameters)

Command specifies the function to be
performed.

Command_Parameters are specific to each
command.

The commands and parameters include but are
not limited to:

– Set/reset S_ULA_Allowed flag (see 5.3.1)

– Set native S_ULA value (see 7.1)

– Set timeout values (see table 6)

– Link Reset (see 12.1)

– Initialize (see 12.2)

– Initialize logged events counters (see table 7)

Issued – The SMT issues this primitive to perform
some control function.

Effect – The HIPPI-6400-PH shall perform the
function specified.

5.5.2  64SM_CONTROL.Confirm

This primitive acknowledges the
64SM_CONTROL.Request from the SMT.

Semantics – 64SM_CONTROL.Confirm (Status)

Status reports the success or failure of the
64SM_CONTROL.Request commands.



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

13

5.6  Status service primitives

These primitives, as shown in figure 10, may be
used to obtain status information from the local
HIPPI-6400-PH entity.

HIPPI-
6400-PH

Local SMT
Other End

SMT

64SM_STATUS
.Request

64SM_STATUS
.Confirm

64SM_STATUS
.Indicate

64SM_STATUS
.Response

Figure 10 – Status service primitives

5.6.1  64SM_STATUS.Request

Issued by the local SMT to request a status
report.

Semantics – 64SM_STATUS.Request

Issued – The local SMT issues this primitive
when it wishes to obtain the status of the HIPPI-
6400-PH entity.  Note that an implementation, in
a vendor specific fashion, may issue a blanket
request for all of the status items, or for specific
items.

Effect – The HIPPI-6400-PH entity shall respond
with a 64SM_STATUS.Confirm.

5.6.2  64SM_STATUS.Confirm

This primitive replies to the previous
64SM_STATUS.Request with status information.

Semantics – 64SM_STATUS.Confirm (Status)

Status shall contain, but is not limited to:

– S_ULA_Allowed state (see 5.3.1)

– Native S_ULA value (see 7.1)

– Timeout values (see table 6)

– Logged events (see table 7)

– Activity monitor state (see 13.1)

– Link state, i.e., Normal, Resetting, Initializing,
or Shutdown (see clause 12)

Issued – The HIPPI-6400-PH entity shall issue
this primitive to the SMT in response to a
64SM_STATUS.Request.

Effect –  Unspecified

5.6.3  64SM_STATUS.Indicate

This primitive informs the SMT entity that a major
event has occurred that affects the operation of
the HIPPI-6400-PH entity.

Semantics – 64SM_STATUS.Indicate

Issued – The HIPPI-6400-PH shall issue this
primitive whenever a major event is detected.
Major events shall include, but are not limited to:

– Activity monitor indication going false (see
13.1)

– Link going into Shutdown (see 13.2)

Effect – Unspecified.  A normal response would
be for the SMT entity to read the status and
determine which event occurred.

5.6.4  64SM_STATUS.Response

This primitive acknowledges the
64SM_STATUS.Indicate.

Semantics – 64SM_STATUS.Response

Issued – The SMT entity issues this primitive to
acknowledge receipt of the 64SM_STATUS.In-
dicate.

Effect – The HIPPI-6400-PH is allowed to issue
another 64SM_STATUS.Indicate.



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

14

6  Micropacket contents

6.1  Bit and byte assignments

As shown in figure 3, each micropacket shall
consist of 32 data bytes and 64 bits of control
information.  The data bytes shall be numbered
DB00 - DB31.  DB00 shall be transmitted first.
The data bits in the micropacket shall be
numbered dxx.y where xx is the byte number and
y is the bit number in the byte.

The 64 bits of control information shall be
numbered as bits c63 – c00.  Control bit c00 shall
be transmitted first.  As shown in figure 3, a field
with a numerical value shall have its most-
significant bit in the highest numbered bit
position.

The control information shall contain the following
parameters located in the bits specified.  The
Source side of a link supplies all of the
parameters, except for RSEQ, VCR and CR
which come to the Source from its local
Destination side.  The VC parameter comes from
the Originating Source.  The TAIL, TYPE, and
ECRC parameters normally come from the
Originating Source, but may under error
conditions come from an intermediate device
(see 9.2.3 and 9.2.4).

VC (2 bits, c01–c00) – The Virtual Channel
selector.  (See 6.2.)

TYPE (4 bits, c05–c02) – Identifies the type of
information within the micropacket.  (See 6.3.)

TAIL (1 bit, c06) – TAIL = 1 identifies the last
micropacket of a Message.  TAIL = 0 means
that more micropackets for this Message follow.

ERROR (1 bit, c07) – ERROR = 1 means that
an unrecoverable error has been detected in
the Message, do not check the ECRC.  ERROR
= 0 means that the Message is OK so far.  (See
6.6.3 and 9.1.3.)

VCR (2 bits, c09–c08) – Virtual Channel
number associated with credit addition.  (See
6.5.)

CR (6 bits, c15–c10) – Amount of credit to add
to the Virtual Channel specified in VCR.  (See
6.5.)

RSEQ (8 bits, c23–c16) – Sequence number
associated with micropacket ACK indication.

(See 6.4.)

TSEQ (8 bits, c31–c24) – Sequence number of
transmitted micropacket.  (See 6.4.)

ECRC (16 bits, c47–c32) – End-to-end
checksum covering all of the data bytes up to
this point in a Message, including those in the
Header micropacket.  (See 6.6.)

LCRC (16 bits, c63–c48) – Link level checksum
covering the 32 data bytes, and the c00 through
c47 control bits, in this micropacket.  (See 6.6.)

c63 c48

c47 c32

c31 c16

c15 c00

VCTE TYPEVCRCR

RSEQTSEQ

ECRC

LCRC

Note – Transmission order is top to bottom, and
right to left, in 4-bit groups, as shown in tables 3
and 4.  The most-significant-bit of a parameter is at
the left end of its field.

Figure 11 – Control bits summary

6.2  Virtual Channel (VC) selector

Four Virtual Channels shall be available in each
direction on a link.  Messages on the Virtual
Channels shall be assigned as follows:

– VC0 = Messages with a maximum size of 68
data micropackets (2176 bytes) plus a Header
micropacket.

– VC1 = Messages with a maximum size of
4100 data micropackets (~128 KBytes) plus a
Header micropacket.  Also carries Admin
Command micropackets.

– VC2 = Messages with a maximum size of
4100 data micropackets (~128 KBytes) plus a
Header micropacket.  Also carries Admin
Response micropackets.

– VC3 = Messages with a maximum size of
134,217,728 data micropackets (~4 GBytes)



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

15

plus a Header micropacket.  To avoid
congestion, Originating Sources shall only
initiate VC3 transfers to Final Destinations that
have agreed to accept them, e.g., by using a
Scheduled Transfer as specified in HIPPI-ST or
by other unspecified means.

NOTE – The maximum Message size for VC0,
VC1, and VC2 was picked to be an integral power
of 2, plus up to 128 bytes for ULP header(s).  For
example, VC0's maximum Message size is 69
micropackets: one Header micropacket, four
micropackets carrying 128 bytes of ULP header(s),
and 64 micropackets carrying 2048 bytes of user
payload.

6.3  Micropacket TYPEs

The 4-bit TYPE parameter shall indicate the
contents of the micropacket.

Micropackets whose TYPE < x'8', or whose TYPE
= x'A', are provided for control at the link level or
for credit update.  These micropackets are not
loaded into any VC Buffer (see figure 5) at the
Destination despite the VC field being transmitted
as x'0'.  As such, the Source need not have credit
available for VC0 prior to sending these
micropackets, and the Destination shall not
generate additional VC0 credit as a result of
having received these micropackets.

Only micropackets whose TYPE ≥ x'8' shall be
retransmitted.

Undefined TYPE values are reserved for future
use.  Actions to be taken as a result of receiving
an undefined TYPE are detailed in 9.1.4.

6.3.1  TYPE = link control micropackets

Control micropackets operate at the link level, do
not carry any user data, acknowledgments, or
credit update information.  (See clause 12.)
Control micropackets include:

– Reset (TYPE = x'2') – Sent to initiate a Link
Reset operation.  (See 12.1.)

– Reset_ACK (TYPE = x'3') – The receiving
device has completed the Link Reset operation.

– Initialize (TYPE = x'4') – Sent to initiate an
Initialization operation.  (See 12.2.)

– Initialize_ACK (TYPE = x'5') – The receiving
device has completed the Initialization operation.

NOTE – Reset_ACK and Initialize_ACK
micropackets should be discarded if received during
normal operation (see figure 20).

6.3.2  TYPE = Null micropackets

Null micropackets (TYPE = x'7') are gap-fillers,
and shall be used to keep the link active when
there are no other micropackets to transmit.  Null
micropackets may carry ACK indications.

6.3.3  TYPE = Data micropackets

Data micropackets (TYPE = x'8') carry payload.

6.3.4  TYPE = Header micropackets

Header micropackets (TYPE = x'9') carry routing
and control information.

6.3.5  TYPE = Credit-only micropackets

When credits are available, and there are no
Data micropackets to send, then Credit-only
micropackets (TYPE = x'A') are used to carry
credit update information, and acknowledgments.

6.3.6  TYPE = Admin micropackets

Admin micropackets (TYPE = x'F') are used for
support and initialization of HIPPI-6400 links,
elements, and systems.  Admin micropacket
contents and uses are specified in HIPPI-6400-
SC.

6.4  Sequence number parameters

The transmit sequence number (TSEQ) shall
increment by one for each micropacket
transmitted whose TYPE ≥ x'8'.  TSEQ shall wrap
from x'FE' to x'00'.  The receive sequence
number (RSEQ) shall be used to acknowledge
(ACK) these micropackets.  RSEQ shall equal the
TSEQ of the most recent micropacket being
acknowledged, or the latest TSEQ of a
contiguous group of micropackets being
acknowledged (see 9.3 and 8.2).  TSEQ shall
begin with the value = x'00' after a Link Reset.
RSEQ = x'FF' indicates that no ACK indication is
being transmitted (used while the link fills with
micropackets after a Link Reset).  TSEQ shall not
overrun RSEQ, i.e., there shall be no more than
255 unacknowledged micropackets.



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

16

Table 2 – Micropacket contents summary

Reset/
Initialize

Null Credit-only Header Data Admin

Data Bytes
contents

0* 0* 0*
32 bytes of

header
information
(see 7.1)

32 bytes of
payload

Administrative
information

VC 0* 0* 0* any any Requests on VC1
Responses on VC2

TYPE (hex)  2,3,4,5 7 A 9 8 F

TAIL 1* 0* 0*
= 1 on last

micropacket of
Message

= 1 on last
micropacket of

Message

1

ERROR 0* 0* 0 = 1 if error = 1 if error = 1 if error

TSEQ x'FF' x'FF' increments increments increments increments

RSEQ 1* ACK ACK ACK ACK ACK

VCR 0* 0* any any any any

CR 0* 0* any any any any

LCRC single single single single single single

ECRC single single single accumulating accumulating single
0* = transmit all bits of this field as 0's, a receiver must permit any value
1* = transmit all bits of this field as 1's, a receiver must permit any value
any = any data value as appropriate
single = this CRC is calculated and checked for this single micropacket
accumulating = ECRC as defined in 6.6.3

NOTES

1  The TSEQ and RSEQ parameters are
independent of the Virtual Channel used to transmit
the micropacket.

2  The TSEQ and RSEQ parameters are local to a
specific link.  For example, a micropacket that
transverses more than one link will most likely have
different TSEQ numbers on the different links.

3  The first micropacket with TYPE ≥ x'8' following
a stomped micropacket (see 6.6.2.1) uses the
same TSEQ value as in the stomped micropacket
since that TSEQ value was not consumed.

The wrap at x'FE' shall be taken into account
when processing ACK indications.  For example,
if the previous ACK indication had RSEQ = x'F7',
and an ACK indication with RSEQ = x'03' is
received, then the micropackets whose TSEQ
value = x'F8' through x'FE', and from x'00'
through x'03', are acknowledged and their
memory may be reused by the Source.

6.5  Credit update parameters

The Destination shall insert the VCR and CR
parameters in micropackets to inform the Source
that CR number of micropacket buffers have
been freed up for the VC indicated by VCR.  The
Source shall increase its Credit Counter for this
Virtual Channel by the value in CR.  The Source
Credit Counter range shall be 255, and the
number of outstanding credits shall be ≤ 255.

NOTES

 1  The CR value is an incremental update value,
not the number of buffers currently available in the
Destination.

2  At 40 ns per micropacket, and 5 ns per meter of
cable, each credit is equivalent to about 8 meters of
cable.  Hence, a Credit Count, and Destination
buffer capacity per Virtual Channel, of 255 will
support full bandwidth on a 1 km link when round



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

17

trip time is taken into account and Destination
latency is low.

3  If the Destination does not send adequate credits
then the Source may not be able to send on some
VCs.

6.6  Check functions

6.6.1  Intended use of CRCs

Two 16-bit cyclic redundancy checks (CRCs)
shall be used.  The link CRC (LCRC) checks all
of the data bytes and control bits in a  single
micropacket.  The LCRC shall be generated by a
link's Source, and checked by the same link's
Destination, i.e., it is local to a link.

The end-to-end CRC (ECRC) checks all of the
data bytes of a Message up to the end of the
current micropacket of the Message, i.e., it may
cover multiple micropackets.  The ECRC shall be
generated by the Originating Source, and should
be passed unchanged through intermediate link-
level devices.  The ECRC shall be checked at
each Destination in the path.  See 9.1 for ECRC
error operations.

The LCRC and ECRC shall not be generated or
checked for a training sequence (see 11.1).

While this standard covers the link level and host
interface, other documents may require
intermediate link-level devices to carry the ECRC
across them, for example, across switches.  Link-
level devices, as described here, are devices that
do not operate on the payload portion of data
micropackets.

6.6.2  Link-level CRC (LCRC)

The link CRC (LCRC) shall cover all of the data
bytes, and the control bits except for itself.  The
LCRC generator and checker shall be initialized
to all ones (x'FFFF') for each micropacket.

The LCRC polynomial shall be:

x16 + x12 + x5 + 1

Figure 12 is an example serial implementation.
The LCRC may be implemented in a parallel
fashion rather than serial, but must produce the

same results as the serial example.  The c63
through c48 bits are the LCRC bits in the control
word.  The incoming data and control bits are
exclusive OR'd with c48 to generate a sum value;
the sum value is exclusive OR'd with selected
control bits as they are shifted right once each bit
period.  The data and control bits shall be input to
the generator in transmission sequence, i.e., 64
data bits, 16 control bits, 64 data bits, 16 control
bits, etc.  The sequence is d00.0, d00.1, d00.2,
...d00.7, d01.0...d01.7, ...d07.7, c00, c01,
c02...c15, d08.0...d15.7, c16...c31, d16.0...d23.7,
c32...c47, d24.0...d31.7.  Refer to tables 3 and 4
for the transmission sequence.  After passing all
304 input bits, c63-through-c48 contain the most-
significant through least-significant bits of the
LCRC.

At the destination, the LCRC check may be
implemented by clocking the entire micropacket,
including the LCRC parameter (c63..c48), into
either a serial or parallel checker.  In this case, a
residue is available in the checker register after
the last clock rather than a syndrome.  If this
check method is used, a residue of x'0000'
indicates no errors, and x'06A9' indicates that a
"stomp" code was received.

See 9.1.1 for details of a Destination's actions
when checking the LCRC.  See annex A.3 for the
equations to generate the LCRC in a parallel
fashion.

6.6.2.1  Stomp code at Source

A Source may decide during the course of
transmitting a micropacket that it wishes to
"nullify" that transmission.  This shall be done by
XORing a "stomp" code of x'874D' with the LCRC
that it has calculated for the micropacket.  The
Source shall treat a "stomped" micropacket as if
it never occurred, i.e., not save the "stomped"
micropacket in the retransmit buffer, and not
increment the TSEQ number since the TSEQ
number was not consumed.

6.6.2.2 Stomp code at Destination

If the Destination detects a "stomp" code (see
6.6.2), then an LCRC error shall not be logged
(see 9.1.1).



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

18

c56c57c58c60c62 c54 c52 c50 c48c55 c53c59c61c63 c51 c49

= exclusive OR

Data in

Figure 12 – LCRC implementation example

c40c41c42c44c46 c38 c36 c34 c32c39 c37c43c45c47 c35 c33

= exclusive OR

Data in

Figure 13 – ECRC implementation example

6.6.3  End-to-end CRC (ECRC)

The end-to-end CRC (ECRC) shall include only
the micropacket's data bytes, not the control bits,
in its calculation.  The ECRC shall include all of a
Message's date bytes up to this point in the
Message, i.e., the data bytes in the Header
micropacket and in all of the Data micropackets
up to this point in the Message.

If ERROR ≠ 1, then all Sources not generating
the original ECRC shall check the ECRC prior to
transmission, and if the ECRC is in error then set
ERROR = 1 in this micropacket's control bits.  An
ECRC_Source_Error shall be logged for only the
first occurrence of this error in a Message (see
14.1).  This aids in error isolation and prevents
endless retransmission loops.

The ECRC generator polynomial shall be:

x16 + x12 + x3 + x + 1

The ECRC is calculated and maintained
independently for each VC.  The ECRC  checker
and generator for a VC shall be initialized to all
ones (x'FFFF') for single coverage micropacket
TYPEs (see table 2) and for a particular VC at the
beginning of a Message on that VC (i.e., when
the previous micropacket had TAIL = 1 or the
current micropacket has TYPE = Header.

Figure 13 is an example ECRC serial
implementation.  The ECRC may be
implemented in a parallel fashion rather than
serial, but must produce the same results as the
serial example.  The c47 through c32 bits are the
ECRC bits in the control word.  The incoming
data bits are exclusive OR'd with c32 to generate
a sum value; the sum value is exclusive OR'd
with selected control bits as they are shifted right
once each bit period.  The data bits shall be input
to the generator in transmission sequence, i.e.,
d00.0, d00.1, d00.2, ...d00.7, d01.0...d01.7,
...d31.7.  Refer to tables 3 and 4 for the
transmission sequence.  After passing all 256 of
the micropacket's data bits, c47-through-c32
contain the most-significant through least-
significant bits of the ECRC for this micropacket.
The ECRC value will normally be different for
each micropacket of a Message since the ECRC
accumulates as the Message progresses (see
table 1).

See 9.1.3 for details of a Destination's actions
when checking the ECRC.  See annex A.4 for the
equations to generate the ECRC in a 64-bit-wide
fashion.



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

19

7  Message structure

As defined in 4.4, a Message is an ordered
sequence of one or more micropackets which
have the same VC, start with a Header
micropacket (TYPE = Header), and have TAIL =
1 in the last micropacket.  Each VC may only
have a single Message in progress at any time.
Since only complete micropackets are
transmitted, a Message that is not an integral
multiple of 32 bytes in length shall be padded
with zeros in the last micropacket.

The Message header format is shown in figure 14
as a group of 32-bit words.  The Media Access
Control (MAC) header, and LLC/SNAP header,
shall reside in the first 24 bytes of all Header
micropackets.  If a parameter uses more than
one byte, the lowest numbered byte is the most-
significant byte.  The last eight bytes of the
Header micropacket may be used by other
protocols, and are not defined in this standard.

7.1  MAC header

The MAC header shall be included in all HIPPI-
6400 Messages.  The MAC header shall be in the
first micropacket (TYPE = Header) of a Message,
and shall contain:

D_ULA (48 bits, DB00-DB05) – The IEEE 48-bit
ULA network address, as defined in ANSI/IEEE
Std 802, identifying the payload's Final
Destination.  Figure 15 (following IEEE 802.1A
canonical bit order, and HIPPI byte order)
details the placement of the D_ULA.

S_ULA (48 bits, DB06-DB11) – The IEEE 48-bit
ULA network address, as defined in ANSI/IEEE
Std 802,  identifying the payload's Originating
Source.  Figure 15 details the placement of the
S_ULA.

M_len (32 bits, DB12-DB15) – The Message
length, in bytes, following the M_len field,
exclusive of any padding in the last
micropacket.

D_ULA

M_len

(lsb)

(lsb)
MAC header S_ULA

DSAP SSAP Ctl Org

Org Org EtherType

Payload

Payload

00-03

04-07

08-11

12-15

16-19

20-23

24-27

28-31

Bytes

IEEE 802.2
LLC/SNAP header

Figure 14 – Header micropacket contents

D_ULA Octet 0 D_ULA Octet 1 D_ULA Octet 2 D_ULA Octet 3

D_ULA Octet 4 D_ULA Octet 5 S_ULA Octet 0 S_ULA Octet 1

S_ULA Octet 2 S_ULA Octet 3 S_ULA Octet 4 S_ULA Octet 5

I
G

U
L

I
G

U
L

NOTE – U/L = 0 for Universal address, 1 for Locally administered; I/G = 0 for Individual address, 1 for Group,

Figure 15 – Detailed ULA layout



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

20

7.2  LLC/SNAP header

The LLC/SNAP header, as defined in ISO/IEC
8802-2 (ANSI/IEEE Std. 802.2), shall be included
in all Messages.  The LLC/SNAP header shall be
64 bits (DB16-DB23) and shall immediately follow
the MAC header in the first micropacket (Header
micropacket).  The values of the LLC/SNAP
header subfields shall be: DSAP = x'AA' (i.e.,
SNAP), SSAP = x'AA' (i.e., SNAP), Ctl = x'03'
(i.e., unnumbered packets), and the three Org =
x'00' (i.e., generic packets).  Codings of the
EtherType field shall be as assigned in the current
"Assigned Numbers" RFC, e.g., RFC 17001).  For
the convenience of the reader, HIPPI-6400-
specific EtherTypes are listed below:

x'8180' = HIPPI-FP as specified in ANSI
X3.210.  (See annex A.)

x'8181' = Scheduled Transfer, as specified in
ANSI X3.xxx, HIPPI-ST.

x'8182' = Locally administered.
x'8183' = Reserved

7.3  Payload

The eight bytes following the LLC/SNAP header
belong to the ULP using this Message.  The
payload bytes may be used to carry additional
headers, parameters, or data.

8 Source specific operations

8.1  Credit update indications on Source side

Credit update indications from the remote end are
received on the local Destination side, and
passed to the local Source side, as shown in
figure 5.  A credit update shall increase the
available credit, by the amount in the CR
parameter, on the Virtual Channel whose number
is the value in the VCR parameter.

If data is ready to be sent on a given VC, but
credits are exhausted for this VC (i.e., credit = 0)
for the duration of a timeout period, then the link

is shut down (see 13.2), and a VC[0-
3]_Credit_Timeout_Error logged.  The default
timeout value shall be 2 seconds (see 14.2).

If a credit update results in credit > 255 then the
link shall be reset (see 12.1) and a VC[0-
3]_Credit_Overflow_Error logged.

8.2  ACK indications on Source side

ACK indications (see 6.4 and 9.3) from the
remote end are received on the local Destination
side, and passed to the local Source side, as
shown in figure 5.  An ACK indication
acknowledges all of the transmitted micropackets
whose TSEQ ≤ RSEQ, i.e., the memory allocated
to these micropackets may be re-used.  RSEQ =
x'FF', which may occur immediately after a Reset
operation  (see 9.3), shall be ignored.

The ACK indication timeout indicates that a
TSEQ was transmitted, but not acknowledged for
the length of time longer than the worst-case
round trip time possible for an acknowledgment
to occur.  If the ACK indication timeout expires,
the Source shall retransmit all micropackets, (see
8.4), that have not been acknowledged, and shall
log an RSEQ_Missing_Error (see 14.1).  The
ACK indication timeout default value shall be 12
µs (see 14.2).

NOTE – The ACK indication timeout provides a
recovery mechanism even in the event of lost
RSEQ values due to link errors.  Faster recovery
may be possible with other schemes, e.g., NAKs,
but the complexity required for the performance
gain did not seem worth it, especially since errors
should be infrequent.

If an illegal RSEQ value is received, the Source
shall retransmit all micropackets, (see 8.4), that
have not been acknowledged, and log an
RSEQ_Out_Of_Range_Error (see 14.1).  An
illegal RSEQ is one that does not equal or fall
between the last successfully received RSEQ and
the highest  transmitted but not acknowledged
TSEQ.

1) RFC (Request For Comment) documents are working standards documents from the TCP/IP internetworking
community.  Copies of these documents are available from numerous electronic sources (e.g., http://www.ietf.org)
or by writing to IETF Secretariat, c/o Corporation for National Research Initiatives, 1895 Preston White Drive, Suite
100 Reston, VA 20191-5434, USA.



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

21

8.3  ACKs and credit updates to remote end

The local Destination side sends ACK indications
and credit update information to the remote end
by first queuing them to the local Source side, as
shown in figure 5.  The Source side shall transmit
this information in micropackets using the
appropriate control bits.  Since the ACK
indications and credit update information do not
share their fields with any other parameters they
can be sent with every micropacket.

The local Destination may queue multiple ACK
indication RSEQ parameters before one is
transmitted by the local Source end.  The RSEQ
parameter should be over-written so that the ACK
indication Message transmitted uses the latest
value of RSEQ.

8.4  Micropacket retransmission

A retransmission sequence, as triggered by the
error conditions defined in 8.2, shall consist of
two consecutive training sequences (see 11)
followed by retransmission of all of the
unacknowledged micropackets in the Output
Buffer (see figure 5).

Multiple retransmissions may be required in the
event of poor link quality.  The link shall be shut
down (see 13.2), and a Retransmissions error
logged (see 14.1), if successful operation is not
achieved after a number of successive
retransmissions of the same data.  The default
number is two, and it shall be programmable to
other values, including 1 and 4.  The mechanisms
and procedures used to set values, different from
the default value, are outside the scope of this
standard.

NOTE – This number of allowed consecutive
retransmissions may need to be larger to
accommodate lengthy noise hits and/or to provide
equivalent noise immunity when smaller ACK
indication timeout values (see 8.2) are chosen for
short cables.

Upon retransmission, the following parameters,
from the original micropacket, shall have the
same value in the retransmitted micropacket.

– VC
– TYPE
– TAIL
– ERROR
– TSEQ
– VCR
– CR
– ECRC

The following parameters may change as a
micropacket is retransmitted.

– RSEQ
– LCRC

9  Destination specific operations

9.1  Link level processing

The Destination shall process received
micropackets in the order of the following
subclauses.  The unnumbered items within each
subclause may be checked in any order.  Note
that no acknowledgment (i.e., with RSEQ) shall
be given for a micropacket that is discarded.

9.1.1  Check received LCRC

– If LCRC syndrome = x'874D' (stomp code)
then the Destination shall discard the
micropacket, and not log an error.

– If LCRC syndrome ≠ x'0000', and ≠ x'874D'
(stomp code), then the Destination shall discard
the micropacket and log an LCRC_Error.

9.1.2  Check received TSEQ

If no errors were detected in 9.1.1, and TSEQ ≠
x'FF', then the following checks shall be made.
TYPE < x'8' is an error.  TYPE ≥ x'8', and TSEQ
is not one greater than the last non-x'FF', non-
stomped, TSEQ received, is also an error.  In
either case, the micropacket shall be discarded.
Additionally, a TSEQ_Error shall be logged
unless no micropackets with TYPE ≥ x'8' have
been accepted since the last TSEQ_Error was
logged.



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

22

9.1.3  Check received ECRC

If no errors were detected in 9.1.1 or 9.1.2, then
the following checks shall be made.

– If ERROR = 0 and the ECRC syndrome ≠
x'0000', then the Destination shall discard the
micropacket and log an ECRC_Error.

– If ERROR = 1, then the Destination shall
process the micropacket as if the ECRC were
correct (unless this is the Final Destination in
which case an error shall be signalled to the
ULP).

9.1.4  Undefined TYPE

If TYPE = undefined and is in the range of x'0' -
x'7' then the Destination shall treat the
micropacket as a Null micropacket.  If TYPE =
undefined and in the range of x'8' - x'F' then
intermediate Destinations shall treat the
micropacket as a Data micropacket.  Treatment
by a Final Destination is not specified by this
standard.  For any undefined TYPE value, a
VC[0-3]_Undefined_TYPE_Error shall be logged
and the most recent offending TYPE value stored
in Undefined_TYPE_Value.

NOTE – The actions applied to Undefined TYPEs
are intended to allow for future use of the Undefined
TYPE values.

9.2  Check for Message protocol errors

Message protocol error checking (at the
Destination) shall be done on micropackets that
have not been discarded in 9.1 and its
subclauses.  Since a Message is restricted to a
single Virtual Channel, all Message protocol
checking shall be applied to each Virtual Channel
independently.  Credit-only (TYPE = x'A')
micropackets shall be ignored for the purposes of
Message protocol checking.  Otherwise,
micropackets shall be checked in the order
received on each Virtual Circuit.

9.2.1  Admin missing TAIL bit

If TYPE = Admin, and Tail = 0, then the
Destination shall forward the Admin micropacket
with ERROR = 1, and TAIL = 1.  A VC[1-
2]_Admin_Tail_Error shall be logged.

9.2.2  Missing start of Message

If a Message is missing the Header micropacket
(i.e., a micropacket with TYPE = Data or
undefined is received following a micropacket
with TAIL = 1, or a Link Reset operation) then the
Destination shall process the micropackets on
this VC until a micropacket with TYPE = Header
or Admin is received.  This processing for the
micropackets shall consist of discarding the data
bytes; their control information shall be treated
normally and RSEQs shall be generated.
Subsequent Header or Admin micropackets shall
be treated normally. The Destination shall log a
VC[0-3]_Missing_Start_of_Message_Error for
each discarded Message; not log an error for
each discarded micropacket.

9.2.3  Missing end of Message

If the end of a Message is missing (i.e., TYPE =
Header or Admin following a Data, Header, or
undefined TYPE ≥ x'8' micropacket with TAIL =
0) then the Destination shall fabricate an end of
Message micropacket (Data Bytes = x'00', VC =
as received, TYPE = Data, TAIL = 1, ERROR =
1, other parameters as appropriate).  The
Destination shall insert the fabricated
micropacket into the VC stream, and shall log a
VC[0-3]_Missing_End_of_Message_Error.  The
Header or Admin micropacket shall be treated
normally.

9.2.4  Stall timeout

If a Message is in progress on a VC, that VC's
buffer is empty, and no Data micropackets have
been received within the Stall timeout period,
then the Destination shall fabricate an end of
Message micropacket (Data Bytes = x'00', VC =
as received, TYPE = Data, TAIL = 1, ERROR =
1, other parameters as appropriate).  The
Destination shall insert the fabricated
micropacket into the VC stream, and shall log a
VC[0-3]_Stall_Timeout_Error.  This action flushes
the Message in progress.  The default value of
the Stall timeout shall be 2 ms (see 14.2).

NOTE – Implementors are cautioned that the Stall
timeout may be triggered by a slow Source host.  If
slow hosts are expected, then the Stall timeout
value may be set to a larger value to avoid
inadvertent actions.



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

23

9.2.5  No errors detected

If no errors are detected, and TYPE = Header or
Data, the micropacket shall be acknowledged and
delivered to the Virtual Channel buffer designated
by the VC parameter.

If no errors are detected, and TYPE ≠ Header or
Data, the micropacket shall be processed by the
Destination.

9.3  Generating ACKs

The Destination acknowledges correctly received
micropackets by using the RSEQ parameter of
micropackets flowing in the reverse direction.
Multiple micropackets may be acknowledged with
a single RSEQ (e.g., if micropackets with TSEQ
= 0,1...7 are received, transmitting RSEQ = 5
acknowledges micropackets 0,1...5, but not 6 and
7).  Only micropackets that are not discarded due
to errors (see 9.1) and whose TYPE value is in
the range x'8' – x'F' shall be acknowledged.  If the
Destination does not have a new value of RSEQ
to send, it shall repeat the last RSEQ value.

Once an error is detected that causes a
micropacket not to be acknowledged, the
Destination shall not change the RSEQ value
until correctly receiving a micropacket with TSEQ
= RSEQ + 1 (the retransmission of the
micropacket that was in error).  Hence, an error
will result in a given RSEQ value being
continually sent, and the Source timing out
waiting for the expected RSEQ value (i.e., RSEQ
> last RSEQ).

The Destination shall use RSEQ = x'FF' after a
Link Reset or Initialize operation until it has
received the micropacket with TSEQ = x'00'.



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

24

10  Signal line encoding

10.1  Signal line bit assignments

The data bytes and control bits shall be
transmitted on the signal lines specified in table 3
for a 16-bit wide interface, and as specified in
table 4 for an 8-bit wide interface.   Nomenclature

for the data and control bits is detailed in figure 3.
Data signal lines are labeled capital D and a two-
digit number, e.g., D00.  Control signal lines are
labeled capital C and a one-digit number, e.g.,
C0.  The horizontal rows correspond to logical
clock ticks.  They are grouped in fours,
corresponding to the 4b/5b coding.

Table 3 – Signal line bit assignments in a 16-bit system

Signal lines

D D D D D D D D D D D D D D D D
bit C3 C2 C1 C0 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
a 12 08 04 00 07.4 07.0 06.4 06.0 05.4 05.0 04.4 04.0 03.4 03.0 02.4 02.0 01.4 01.0 00.4 00.0
b 13 09 05 01 07.5 07.1 06.5 06.1 05.5 05.1 04.5 04.1 03.5 03.1 02.5 02.1 01.5 01.1 00.5 00.1
c 14 10 06 02 07.6 07.2 06.6 06.2 05.6 05.2 04.6 04.2 03.6 03.2 02.6 02.2 01.6 01.2 00.6 00.2
d 15 11 07 03 07.7 07.3 06.7 06.3 05.7 05.3 04.7 04.3 03.7 03.3 02.7 02.3 01.7 01.3 00.7 00.3

a 28 24 20 16 15.4 15.0 14.4 14.0 13.4 13.0 12.4 12.0 11.4 11.0 10.4 10.0 09.4 09.0 08.4 08.0
b 29 25 21 17 15.5 15.1 14.5 14.1 13.5 13.1 12.5 12.1 11.5 11.1 10.5 10.1 09.5 09.1 08.5 08.1
c 30 26 22 18 15.6 15.2 14.6 14.2 13.6 13.2 12.6 12.2 11.6 11.2 10.6 10.2 09.6 09.2 08.6 08.2
d 31 27 23 19 15.7 15.3 14.7 14.3 13.7 13.3 12.7 12.3 11.7 11.3 10.7 10.3 09.7 09.3 08.7 08.3

a 44 40 36 32 23.4 23.0 22.4 22.0 21.4 21.0 20.4 20.0 19.4 19.0 18.4 18.0 17.4 17.0 16.4 16.0
b 45 41 37 33 23.5 23.1 22.5 22.1 21.5 21.1 20.5 20.1 19.5 19.1 18.5 18.1 17.5 17.1 16.5 16.1
c 46 42 38 34 23.6 23.2 22.6 22.2 21.6 21.2 20.6 20.2 19.6 19.2 18.6 18.2 17.6 17.2 16.6 16.2
d 47 43 39 35 23.7 23.3 22.7 22.3 21.7 21.3 20.7 20.3 19.7 19.3 18.7 18.3 17.7 17.3 16.7 16.3

a 60 56 52 48 31.4 31.0 30.4 30.0 29.4 29.0 28.4 28.0 27.4 27.0 26.4 26.0 25.4 25.0 24.4 24.0
b 61 57 53 49 31.5 31.1 30.5 30.1 29.5 29.1 28.5 28.1 27.5 27.1 26.5 26.1 25.5 25.1 24.5 24.1
c 62 58 54 50 31.6 31.2 30.6 30.2 29.6 29.2 28.6 28.2 27.6 27.2 26.6 26.2 25.6 25.2 24.6 24.2
d 63 59 55 51 31.7 31.3 30.7 30.3 29.7 29.3 28.7 28.3 27.7 27.3 26.7 26.3 25.7 25.3 24.7 24.3

NOTES
1 The two-digit numbers in the Cn columns are the control bits, cnn.
2 The three-digit numbers in the Dnn columns are the data bits, dxx.y, where xx is the byte number and

 y is the bit number in the byte.
3 The 4-bit groups in a column are transmitted on the associated signal line, top group first, bottom

group last.
4 The four-bit groups in a column denote 4-bit code groups (dcba) for encoding/decoding to/from the

5-bit transmission codes (zyTxw) specified in table 5.  A 5-bit group code (wxTyz) is transmitted over
one signal line, e.g., D00.



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

25

Table 4 – Signal line bit assignments in an 8-bit system

 Signal lines

D D D D D D D D
bit C1 C0 07 06 05 04 03 02 01 00
a 08 00 07.0 06.0 05.0 04.0 03.0 02.0 01.0 00.0
b 09 01 07.1 06.1 05.1 04.1 03.1 02.1 01.1 00.1
c 10 02 07.2 06.2 05.2 04.2 03.2 02.2 01.2 00.2
d 11 03 07.3 06.3 05.3 04.3 03.3 02.3 01.3 00.3

a 12 04 07.4 06.4 05.4 04.4 03.4 02.4 01.4 00.4
b 13 05 07.5 06.5 05.5 04.5 03.5 02.5 01.5 00.5
c 14 06 07.6 06.6 05.6 04.6 03.6 02.6 01.6 00.6
d 15 07 07.7 06.7 05.7 04.7 03.7 02.7 01.7 00.7

a 24 16 15.0 14.0 13.0 12.0 11.0 10.0 09.0 08.0
b 25 17 15.1 14.1 13.1 12.1 11.1 10.1 09.1 08.1
c 26 18 15.2 14.2 13.2 12.2 11.2 10.2 09.2 08.2
d 27 19 15.3 14.3 13.3 12.3 11.3 10.3 09.3 08.3

a 28 20 15.4 14.4 13.4 12.4 11.4 10.4 09.4 08.4
b 29 21 15.5 14.5 13.5 12.5 11.5 10.5 09.5 08.5
c 30 22 15.6 14.6 13.6 12.6 11.6 10.6 09.6 08.6
d 31 23 15.7 14.7 13.7 12.7 11.7 10.7 09.7 08.7

a 40 32 23.0 22.0 21.0 20.0 19.0 18.0 17.0 16.0
b 41 33 23.1 22.1 21.1 20.1 19.1 18.1 17.1 16.1
c 42 34 23.2 22.2 21.2 20.2 19.2 18.2 17.2 16.2
d 43 35 23.3 22.3 21.3 20.3 19.3 18.3 17.3 16.3

a 44 36 23.4 22.4 21.4 20.4 19.4 18.4 17.4 16.4
b 45 37 23.5 22.5 21.5 20.5 19.5 18.5 17.5 16.5
c 46 38 23.6 22.6 21.6 20.6 19.6 18.6 17.6 16.6
d 47 39 23.7 22.7 21.7 20.7 19.7 18.7 17.7 16.7

a 56 48 31.0 30.0 29.0 28.0 27.0 26.0 25.0 24.0
b 57 49 31.1 30.1 29.1 28.1 27.1 26.1 25.1 24.1
c 58 50 31.2 30.2 29.2 28.2 27.2 26.2 25.2 24.2
d 59 51 31.3 30.3 29.3 28.3 27.3 26.3 25.3 24.3

a 60 52 31.4 30.4 29.4 28.4 27.4 26.4 25.4 24.4
b 61 53 31.5 30.5 29.5 28.5 27.5 26.5 25.5 24.5
c 62 54 31.6 30.6 29.6 28.6 27.6 26.6 25.6 24.6
d 63 55 31.7 30.7 29.7 28.7 27.7 26.7 25.7 24.7

NOTES:
1 The two-digit numbers in the Cn columns are the control

 bits, cnn.
2 The three-digit numbers in the Dnn columns are the data

bits, dxx.y, where xx is the byte number and y is the bit
number in the byte.

3 The 4-bit groups in a column are transmitted on the
associated signal line, top group first, bottom group last.

4 The four-bit groups in a column denote 4-bit code groups
(dcba) for encoding/decoding to/from the 5-bit

transmission
codes (zyTxw) specified in table 5.  A 5-bit code group
(wxTyz) is transmitted over one signal line, e.g., D00.



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

26

10.2  Source-side encoding for dc balance

The transmitted signals shall be encoded to
achieve dc balance on each signal line.  Table 5
specifies the 5-bit signal line codes (zyTxw)
corresponding to the 4-bit input codes (dcba)
from tables 3 and 4.  For example, on signal line
D00, the first dcba 4-bit code consists of bits
d00.0, d00.1, d00.2, and d00.3.  See annex A.1
for an example circuit.

For each signal line, a running count, called the
Disparity Count, shall be kept of all the ones and
zeros transmitted on that line since the link was
reset.  The Disparity Count shall be incremented
for each one transmitted, and decremented for
each zero transmitted.

The appropriate 5-bit code value from table 5,
based on the current value of the Disparity Count,
shall be transmitted in the sequence, w,x,T,y,z.
(T = true/complement bit)  For example in the
right column of tables 3 and 4, if:

a = d00.0 = 1 (least-significant bit)
b = d00.1 = 0
c = d00.2 = 0
d = d00.3 = 0
and Disparity Count = +1 before encoding,

then, based on the third column second row in
table 5, transmit on D00:

w = 1 (transmitted first)
x = 0
T = 1
y = 0
z = 0

Disparity Count = 0 after encoding.

NOTES

1  The range for the Disparity Count at the 5-bit
boundaries is from +4 to -5.  The range for the
Disparity Count is from +6 to -7.

2  The Disparity Count may also be updated by
adding or subtracting the value of Delta Disparity
shown in table 5.  Add Delta Disparity if Disparity
Count < 0; subtract if ≥ 0.

3  The 5-bit code is derived by inserting a 1 in the
middle of the 4-bit code, and then transmitting
either the true or complement value of the resultant
5-bit quantity.

4.  The maximum run length, i.e., the longest string
of continuous 1s or 0s, is 11.  The string of 4-bit
code points creating the maximum run length  is
x'EFC'.  Start with Disparity Count = +3 or +4 for a
string of 11 zeros.  Start with Disparity Count = -4

or -5 for a string of 11 ones.

The data and control signal lines shall be
synchronized with the CLOCK, CLOCK_2, and
FRAME signals as shown in figures 16 and 18.
Figures 15 through 18 are read left to right, i.e.,
events on the left occur before those on the right.
In figures 16 and 18, the CLOCK_2 signal is
deliberately shown skewed in relation to the
CLOCK signal, although in actual implementation
it may not be skewed (see 15.1).

Table 5 – 4b/5b line coding

4-bit
code

dcba

5-bit code
when

Disparity
< 0

zyTxw

5-bit code
when

Disparity
≥ 0

zyTxw

Delta
Disparity

0000 11011 00100  3

0001 11010 00101  1

0010 11001 00110  1

0011 00111 11000  1

0100 10011 01100  1

0101 01101 10010  1

0110 01110 10001  1

0111 01111 10000  3

1000 01011 10100  1

1001 10101 01010  1

1010 10110 01001  1

1011 10111 01000  3

1100 11100 00011  1

1101 11101 00010  3

1110 11110 00001  3

1111 11111 00000  5

10.3  Destination-side decoding

The received signals shall each be decoded in
groups of five bits according to table 5.

NOTES

1  Decoding can be implemented by examining the
middle bit of the 5-bit code; if 1 then use the outer
bits uncomplemented, if 0 then complement before
use.

2  There are no illegal 5-bit codes.



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

27

xw yT wz Tx zy xw yT wz Tx zy

2 ns ticks

CLOCK_2

FRAME

d00.0 
to 

d00.3

d08.0 
to 

d08.3

d16.0 
to 

d16.3

d24.0 
to 

d24.3

Dnn  or Cn

D00 contents 
shown

40 ns

CLOCK

Figure 16 – 16-bit system micropacket

zzyTzywTwzw T y x y z x T z w T y w x y zx x w x T z w T y w x yx T

d00.0 
to 

d00.3

d00.4 
to 

d00.7

d08.0 
to 

d08.3

d08.4 
to 

d08.7

d16.0 
to 

d16.3

d16.4 
to 

d16.7

d24.0 
to 

d24.3

d24.4 
to 

d24.7

1 ns ticks

CLOCK

FRAME

Dnn  or Cn

D00 contents 
shown

40 ns

Figure 17 – 8-bit system micropacket

10.4  FRAME signal

The FRAME signal transitions shall be as shown
in figures 16 through 19.  As shown in figures 18
and 19, the start of a training sequence (40 ns
long) shall be signaled by a 10101 FRAME signal
pattern in a 16-bit system, and by a 1100110011
FRAME signal pattern in an 8-bit system.

As shown in figures 16 and 17, a 0 to 1 transition
on the FRAME signal shall signal the beginning
of a micropacket, unless the transition is part of a
training sequence.  In a micropacket, the FRAME
signal shall = 1 for the first half (20 ns), and shall
= 0 for the last half (20 ns), of the micropacket.

11  Skew compensation

11.1  Training sequences

The Destination shall compensate for up to 8.5 ns
of skew among the signals.  Skew is defined as
the time between the earliest and latest signal
arrival at the Destination.  Training sequences
(see figures 18 and 19) shall be used to measure
the skew, and perform dynamic skew
adjustments.  A FRAME signal pattern, as
specified in 10.4, shall be used to identify a
training sequence.



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

28

Detect 10101 on FRAME signal
Bring Dnn and Cn signals to 0 or +1 disparity

Last portion of
previous

micropacket

Training
detect
(10 ns)

Fill the line
with zeros

(14 ns)

Skew compensation
and edge placement

(14 ns)

Dnn and Cn

FRAME

CLOCK

CLOCK_2

2 ns ticks
40 ns

Figure 18 – 16-bit system training sequence

Last portion of
previous

micropacket

Training
detect
(10 ns)

Fill the line
with zeros

(14 ns)

Dnn and Cn

FRAME

Detect 10101 on FRAME signal
Bring Dnn and Cn signals to 0 or +1 disparity

Skew compensation
and edge placement

(14 ns)

CLOCK

1 ns ticks

40 ns

Figure 19 – 8-bit system training sequence

A single training sequence shall be inserted by
the Source at least every 10 µs to adjust the
dynamic skew, and also to compensate for
CLOCK frequency differences between the
Source and Destination (see annex A.2)  During
the first portion of a training sequence the Source
shall insert appropriate Data and Control bits to
drive the Disparity Count (see 10.2) on those
signal lines to 0 or +1.  The Disparity Count shall
be set to zero at the end of the training sequence.

11.2  Training sequence errors

If the Destination fails to successfully train and
complete its reset/initialize within a Dead-man
timeout from any reset/initialize, then the link
shall be reset (see 12.1) and a
Reset_Initialize_Error shall be logged.  The
Dead-man default value shall be 100 ms (see
14.2).

If the periodic retraining sequences fail to
successfully re-train for any contiguous Dead-
man period after the link had been healthy, then
the link shall be reset (see 12.1) and a
Skew_Retraining_Error shall be logged.



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

29

12  Link Reset and Initialization

Two levels of initialization are specified, Link
Reset and Initialize.  Link Reset affects the local
link only; Initialize may be propagated to other
links.  Link Reset and Initialize operations are
diagrammed in figure 20.  A system power-on
transition shall trigger, independent of the Hold-
off timer (see 12.3), either a Link Reset or
Initialize sequence; the choice is implementation
and system dependent.  Link shutdown (see 13.2)
occurs when the link is fatally flawed.

NOTE – After going into normal operation (see
figure 20) a delay of a few micropackets before
sending other than Null micropackets (e.g., Credit-
only micropackets), can allow the remote end to
complete its sequence before receiving these
micropackets.  Otherwise, the micropackets could
be lost. If these lost micropackets are not avoided
by this delay, they will be recovered automatically
via retransmission

12.1  Link Reset

Link Reset affects the local link only, i.e., it is not
propagated to other links.  When the activity
monitor indication = true (see 13.1), Power-on =
true, and a Link Reset or an Initialization
sequence is not currently in progress, then a Link
Reset sequence may be triggered by the local
administrator, and shall be triggered by:

– the Dead-man timer expires (see 11.2 and
figure 20);

– credit overflow (see 8.1);

– or receiving a micropacket with TYPE =
Reset (see 6.3.1).

A Link Reset shall also be triggered by the
activity monitor indication going from false to true
(see 13.1).

During a Link Reset sequence:

– The receiver shall discard all micropackets
except those with TYPE = Reset, Reset_ACK,
Initialize, or Initialize_ACK, (i.e., with TYPE =
x'2' – x'5').   

– The error logging specified in clause 9 shall
not occur.

Exit from a Link Reset sequence occurs when a
TYPE = Reset_ACK micropacket is received

from the other end of the link, indicating that both
ends of the link have completed the Reset
sequence.  At exit:

– all of the VC input and output buffers shall be
emptied;

– credit for all of the VCs shall be set to zero;

– TSEQ shall be reset to x'00'; RSEQ shall be
set to x'FF';

– the dynamic skew compensation circuitry
adjusted, and micropackets being received
correctly;

– the Disparity Count shall be accurate;

– and the logged events (see table 7) shall
have been initialized if the sequence was
triggered by a system power-on transition,
otherwise the Link Reset shall not modify the
logged events.

12.2  Initialize

Initialize sequences may be propagated to other
entities. When the activity monitor indication =
true (see 13.1), and Power-on = true, an Initialize
sequence:

– may be triggered by the local administrator;

– shall be triggered by receiving a micropacket
with TYPE = Initialize (see 6.3.1), and the Hold-
off timer is expired or not running (see 12.3),
and not currently doing an Initialize sequence
(see figure 20).

During an Initialize sequence:

– The receiver shall discard all micropackets
except those with TYPE = Initialize, or
Initialize_ACK, (i.e., with TYPE = x'4' – x'5').   

– The error logging specified in clause 9 shall
not occur.

– An Initialize indication shall be passed to the
local administrator for possible propagation to
other entities.

The normal exit from an Initialize sequence
occurs when a TYPE = Initialize_ACK
micropacket is received from the other end of the
link, indicating that both ends of the link have
executed the Initialize sequence.  If the link does
not complete the Initialize sequence, i.e., receive



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

30

a TYPE = Initialize_ACK micropacket, within the
Dead-man timer period (see 11.2 and table 6),
then the Initialize sequence shall be terminated
and a Reset sequence started (see figure 20).

NOTE – The rationale for terminating an Initialize
sequence within a limited time is to prevent stale
Initialize sequences from propagating through a
HIPPI-6400 network, i.e., Reset affects only the

local link while Initialize may be propagated through
multiple links.

At exit from an Initialize sequence:

– all of the VC input and output buffers shall be
emptied;

– credit for all of the VCs shall be set to zero;

Dead-man timer expired ?
Dead-man timer expired ?

Dead-man timer expired ?

Start Link Reset sequence
(see 12.1)

Reset local state,
Start Dead-man timer,

Pass Initialize to Administrator

Send Training sequence,
Send Training sequence,

Send Initialize_ACK micropacket

Start Initialize sequence
(see 12.2)

Send Training sequence,
Send Training sequence,

Send Initialize micropacket

Initialize or Initialize_ACK
micropacket received ?

Start Hold-off timer

Initialize_ACK
micropacket received ?

Reset local state
Start Dead-man timer

Send Training sequence,
Send Training sequence,
Send Reset micropacket

Dead-man timer expired ?

Initialize or Initialize_ACK
micropacket received ?

Reset or Reset_ACK
micropacket received ?

Send Training sequence,
Send Training sequence,

Send Reset_ACK micropacket

Initialize or Initialize_ACK
micropacket received ?

Reset_ACK
micropacket received ?

No

No

No

No

No

No

No

Yes No
Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

No

Normal operation,
Enable error logging

Yes

Yes

Figure 20 – Initialize and Link Reset sequences



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

31

– TSEQ shall be reset to x'00'; RSEQ shall be
set to x'FF';

– the dynamic skew compensation circuitry
adjusted, and micropackets being received
correctly;

– the Disparity Count shall be accurate;

– all of the timeout timers (see table 6), except
for the Hold-off timer, shall be initialized;

– and the logged events (see table 7) shall
have been initialized if the sequence was
triggered by a system power-on transition,
otherwise the Initialize shall not modify the
logged events.

12.3  Hold-off timer

A Hold-off timer shall be used to prevent infinite
Initialize oscillations among connected devices.
The Hold-off timer shall be started by the first
receipt of a TYPE = Initialize, or Initialize_ACK,
micropacket.  Until expired, the Hold-off timer
shall be used to prohibit incoming TYPE = Reset
or Initialize micropackets from starting a Reset or
Initialize sequence.  The default value for the
Hold-off timer shall be 10 seconds (see 14.2).

13  Link activity monitoring and shutdown

13.1  Activity monitoring

The activity monitor shall be used to verify that
the interconnecting media is present, and signals
are being passed over the link.

The data (Dnn), control (Cn), FRAME, and
CLOCK signals are affected by the activity
monitor indication.  When the activity monitor
indication = true,

– The outputs of the transmitting circuit(s) shall
be as specified in 15.1 or 16.1.

– The circuit(s) receiving the signals shall be
enabled.

When the activity monitor indication = false, the
transmitting and receiving circuits may be
disabled to prevent damage to the interface or
personnel (see 15.3 and 16.3).

The activity monitor shall be tolerant of the
received signal, riding through minor signal
aberrations during the Activity_Monitor timeout.
For example, the activity monitor indication shall
change after the detected signal has been stable
in its new state (i.e., provide hysteresis) for at
least the Activity_Monitor timeout period.  The
default value of the Activity_Monitor timeout shall
be 1 ms (see 14.2).

13.2  Link shutdown

A link shutdown shall be triggered by:

– The number of times retransmission occurs
exceeds some limit (see 8.4).

– The Source has been unable to transmit due
to lack of credit (see 8.1).

– A Destination receives micropackets for a VC
whose VC Buffer (see figure 5) is full. In this
case, a VC[0-3]_RX_VC_Buffer_Overflow error
logged shall be logged.

During a link shutdown:

– The local transmitter shall send continuous
Null micropackets (with training sequences at
appropriate intervals).

– The local transmitter shall deassert VC flow
control to upstream receiver(s), i.e.,
micropackets destined to go out a port which is
shut down are accepted and discarded by that
port.

– All of the local VC input and output buffers
shall be emptied.

– The receiver shall discard all micropackets
except those with TYPE = Reset, Reset_ACK,
Initialize, or Initialize_ACK, (i.e., with TYPE =
x'2' – x'5').

– The error logging specified in clause 9 shall
not occur.

– Administrative actions may clear the error
counts accessible by Admin operations (see
table 7).

A Link Reset sequence (see 12.1) or Initialize
sequence (see 12.2) is the exit from a link
shutdown.  These may be triggered by a local
administrator, or by receipt of a TYPE = Reset or
Initialize micropacket.



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

32

14  Maintenance and control features

14.1  Timeouts

Table 6 contains a summary of the timeouts, their
default value, and the location in this standard
discussing the timeout.  All of the timeouts shall
be programmable, at least to values of 2X, 1/2X,
and 1/4X.  The mechanisms and procedures used
to set values, different from the default values,
are outside the scope of this standard.

14.2  Logged events

Table 7 contains a summary of the events that
shall be logged, the minimum number of bits for
the parameter, and the location in this standard

discussing the event.  A counter shall not roll
over if its maximum value is reached.

Table 6 – Summary of timeouts

Name
Default
value

Reference

ACK indication timeout 12 µs 8.2

Activity_Monitor timeout 1 ms 13.1

Credit timeout 2 s 8.1

Hold-off timer 10 s 12.3

Dead-man timer 100 ms 11.2

Stall timeout 2 ms 9.2.4

Table 7 – Summary of logged events

Name
Minimum
Number
of bits

Reference

ECRC_Error 8 9.1.3

ECRC_Source_Error 8 6.6.3

LCRC_Error 8 9.1.1

Reset_Initialize_Error 1 11.2

Retransmissions 8 8.4

RSEQ_Missing_Error 8 8.2

RSEQ_Out_Of_Range_Error 8 8.2

Skew_Retraining_Error 1 11.2

TSEQ_Error 8 9.1.2

Undefined_TYPE_Value 4 9.1.4

VC[1-2]_Admin_Tail_Error 1/2 9.2.1

VC[0-3]_Credit_Overflow_Error 1/4 8.1

VC[0-3]_Credit_Timeout_Error 1/4 8.1

VC[0-3]_Missing_End_of_Message_Error 1/4 9.2.3

VC[0-3]_Missing_Start_of_Message_Error 1/4 9.2.2

VC[0-3]_RX_VC_Buffer_Overflow 1/4 13.2

VC[0-3]_Stall_Timeout_Error 1/4 9.2.4

VC[0-3]_Undefined_TYPE_Error 1/4 9.1.4

NOTE – The 1/4, and 1/2, entries under the Number of bits column mean that
there is one bit for an error, e.g., for VC0_Missing_End_of_Message_Error, and
a total of four, or two, errors possible (i.e., one for each VC).



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

33

15  Local electrical interface (optional)

The local electrical interface is an 8-bit interface
(12 signals wide in each direction), intended to
connect to on-board optical drivers and receivers.
Figure 21 shows the components used in a signal
path.  Appropriate values shall be chosen to
match the component and printed circuit board
impedances, and the necessary roll-off
frequency.  The alternative to the local electrical
interface is the copper cable interface (see clause
16).

15.1  Local electrical interface - output

The timing for the Source signals shall  be as
specified in table 8, and shall be measured at the
Source driver output pins.  During a training

sequence, the signals shall be as shown in figure
19.

Differential drivers shall be used on all signal
lines, except for the "light-present" signal (see
15.3).  Signals in the ‘true’ or ‘1’ state shall have
the xx_Out_p pins more positive than the
xx_Out_n pins with a peak-to-peak value within
the voltage range specified in table 9 for driver
output voltage. The corresponding optical signal
shall be 'true' or '1' = 'light-on'.  Implementation of
some differential Source drivers may require DC
termination for correct operation.  Rise and fall
times shall be measured at the 20% and 80%
points of the peak-to-peak signal transition. All
parameters shall be measured at the Source
driver output pins.

RaRa

VTHa +

RbRb

VTHb
+

Source
Driver

Optical
Driver

Ca

Ca

RcRc

VTHc
+

RdRd

VTHd
+

Optical
Receiver

Destination
Receiver

Cb

Cb

Optical portion of the link is
specified in HIPPI-6400-OPT

xx_Out_p
xx_Out_n

xx_In_p
xx_In_n

Optical
fiber

Figure 21 – One signal (of 12 in each direction) of the local electrical interface



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

34

15.2  Local electrical interface - input

A received 'light-on' optical signal shall indicate
'true' or '1'.  The corresponding 'true' or '1' local
electrical differential signal shall have the
xx_In_p pins more positive than the xx_In_n pins.
Implementation of some optical receivers may
require DC termination for correct operation.
Rise and fall times shall be measured at the 20%
and 80% points of the peak-to-peak signal
transition. All parameters are measured at the
Destination receiver input pins.  The received
signals shall be strobed on both edges of the
CLOCK signal.

15.3  Light present signal

The activity monitor (see 13.1) shall be driven by
a 'light-present' signal from the Destination's
optical receiver.  A no-light condition shall be
indicated by no current into the activity monitor
input, allowing it to float to a value of +TBD -
+TBD V, Pulling the activity monitor input to a
value of +TBD - +TBD V, with a maximum
current of TBD mA, shall indicate light present.

Within 1 ms of the activity monitor input going
high, the local output signals (with the exception
of the CLOCK signal) shall be driven to '0' or
'false', resulting in no light being transmitted on
these signals.  The local output signals shall
remain in this state until the activity monitor input
is pulled low.  The CLOCK signal shall be
continually driven (as specified in 15.1)
independent of the activity monitor input level.

NOTES

1 – The activity monitor is available for an open
fiber control function, shutting off the light for eye-
safety reasons unless a complete (non-broken)
optical link is detected.  The CLOCK signal,
uninterrupted and with a 50% duty cycle, is
intended as the pilot signal.  Detection of the
CLOCK signal would be an indication that the
optical path is complete, and hence the other
signals can now be driven.

2 – If the optical receiver does not provide a light-
present signal, then the activity monitor input
should be pulled low.

Table 8 – Local electrical signal timing at Source driver output

Parameter Value Units Comments

CLOCK and CLOCK_2 signals

CLOCK Period 2 ns

   Tolerance ± 0.4 ps ± 0.02% or 200 ppm

CLOCK  Duty Cycle 50 %

    Tolerance ± 50 ps ± 5%

DATA and Control signals

Baud Period 1 ns

   Tolerance ± 0.2 ps ± 0.02% or 200 ppm

???

???

FRAME signal

Period 40 ns

   Tolerance ± 0.8 ps ± 0.002% or 20 ppm

Duty Cycle 50 %

   Tolerance ± 50 ps ± 0.25%



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

35

Table 9 – Local electrical interface, Source driver output

Parameter Max. Typical Min. Units Comments

Vo 400 200 mVp-p Driver output voltage swing

TR 320 160 80 ps Rise time (20% – 80%) into test load

TF 320 160 80 ps Fall time (20% – 80%) into test load

Fin 500 MHz Operating frequency

Imbalance 40 ps Driver imbalance skew

Source driver timing

TPWD 60 ps Total source pulse width distortion

TJITTER 107 ps Total source p-p jitter

Channel skew 500 ps Total pair-to-pair skew

NOTE – All measurements are single-ended rather than differential.

Table 10 – Local electrical interface, Destination receiver input

Parameter Max. Typical Min. Units Comments

Input signal parameters

Vin 2700 - 250 mVp-p Input voltage swing

TR 480 ps Rise time (20% – 80%) at receiver input

TF 480 ps Fall time (20% – 80%) at receiver input

Fin 500 MHz Input operating frequency

Imbalance 310 ps Within a signal pair

TPWD 88 ps Total duty cycle distortion

TJITTER 290 ps Total deterministic and random p-p jitter

Absolute maximum input voltage

Vin 3400 -700 mV Input voltage limits

NOTE – All measurements are single-ended rather than differential.



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

36

16  Copper cable interface (optional)

The copper cable interface is a 16-bit interface
(23 signals wide in each direction), for driving a
multi-conductor copper cable for distances up to
50 meters.  Figure 22 shows the components
used in a signal path and table 11 lists the
component values.  Specification shall be met
when operating with the specified components
and cable.  The alternative to the copper cable
interface is the local electrical interface (see
clause 15).

Table 11 – Copper cable interface
components

Component Value Units Tolerance

Ca 100 pF ± 5%

Cb 4 pF ± 5%

Ra 675 Ω ± 5%

Rb 75 Ω ± 5%

16.1  Copper cable interface - output

Differential drivers shall be used on all signal
lines.  Signals in the 'true' or '1' state shall have
the xx_Out_p pin more positive than the
xx_Out_n pin with a peak-to-peak value within
the voltage range specified in table 13.  Rise and
fall times shall be measured at the 20% and 80%
points of the peak-to-peak signal transition.  All

parameters shall be measured at the Source
driver output pins (see figure 22).

The Source coupling network (i.e., Ca, Cb, and Ra

in figure 22) shall implement an equalization
network matched to the cable parameters.  The
equalization network specified is optimized for a
50 meter 150 Ω twin-ax cable, and usable with
cables as short as 10 m.  Table 12 summarizes
the component values, and annex A.6 describes
the performance, of the equalization network.

Open Issue - How do we support cables less than 10
m long?

The timing for the Source signals shall  be as
specified in table 12, and shall be measured at
the Source driver output pins.  During a training
sequence, the signals shall be as shown in figure
18.

16.2  Copper cable interface - input

Differential receivers shall be used on all signal
lines.  A received differential signal with the
xx_In_p pin more positive than the xx_In_n pin
shall indicate a 'true' or '1'.  Rise and fall times
shall be measured at the 20% and 80% points of
the peak-to-peak signal transition. All parameters
are measured at the Destination receiver input
pins.  The received signals shall be strobed on
both edges of the CLOCK signal.  Receivers shall
operate correctly when receiving signals meeting
the specifications in table 14.

Ca

Ca Cb

Cb

RbRb

xx_Out_n

xx_Out_p

Source
Driver

VTH
+

Destination
Receiver

xx_In_p

Ra

xx_In_n

Ra

Figure 22 – One signal (of 23 in each direction) of the copper cable interface



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

37

16.3  CLOCK_2

The phase relationship between the CLOCK_2
and CLOCK signals shall be any constant value.
The intended uses of the separate CLOCK and
CLOCK_2 signals are:

– to support different skew compensation
implementations (e.g., some implementations
may prefer to use CLOCK_2, instead of
CLOCK, to strobe the signals). The clock signal
used to strobe the signals during retraining
shall also be used to strobe the signals during
normal operation.

– to provide a separate signal that can be
monitored for activity (see 13.1) without
affecting the signal used for strobing the other
signals. If inactivity is detected, the other
signals should be ignored to avoid spurious
error indications, and an implementation may
choose to power down its outputs.

– to provide a free-running clock for systems
using phase-locked loops (PLLs) or other
implementations that cannot tolerate dropouts
of the clock signal.

Table 12 – Copper cable interface signal timing at Source driver output

Parameter Value Units Comments

CLOCK and CLOCK_2 signals

CLOCK Period 4 ns

   Tolerance ± 0.8 ps ± 0.02% or 200 ppm

CLOCK  Duty Cycle 50 %

    Tolerance ± 100 ps ± 5%

DATA and Control signals

Baud Period 2 ns

   Tolerance ± 0.4 ps ± 0.02% or 200 ppm

Duty Cycle 50 % 1010 pattern

   Tolerance ± 100 ps ± 5%

FRAME signal

Period 40 ns

   Tolerance ± 0.8 ps ± 0.002% or 20 ppm

Duty Cycle 50 %

   Tolerance ± 100 ps ± 0.5%



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

38

Table 13 – Copper cable interface, Source driver output

Parameter Max. Typical Min. Units Comments

Vo 2700 2500 2200 mVp-p Driver output voltage

TR 320 160 80 ps Rise time (20% – 80%) into test load

TF 320 160 80 ps Fall time (20% – 80%) into test load

Fin 250 MHz Operating frequency

Imbalance 40 ps Driver imbalance skew

Ro TBD TBD TBD ΩΩ Output impedance

Source driver timing

TPWD 60 ps Total source pulse width distortion

TJITTER 107 ps Total source p-p jitter

Channel skew 500 ps Total pair-to-pair skew

NOTE – All measurements are single-ended rather than differential.

Table 14 – Copper cable interface, Destination receiver input

Parameter Max. Typical Min. Units Comments

Input signal parameters

VIN 200 mVp-p Includes 50 mV noise margin

TR 480 ps Rise time (20% – 80%) at the receiver input

TF 480 ps Fall time (20% – 80%) at the receiver input

Fin 250 MHz Input operating frequency

Imbalance 310 ps Within pair skew, includes 40 ps margin

TPWD 88 ps Total duty cycle distortion

TJITTER 290 ps Total peak-to-peak, includes 38 ps margin

Absolute maximum input voltages

Vin 3400 -700 mV Input voltages

NOTE – All measurements are single-ended rather than differential.

Open Issue – The transfer function between the electrical driver and the cable needs to be specified with enough
information so that cable manufacturers and assemblers can provide an appropriate equalization network.



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

39

16.4  Copper cable connectors

The receptacle shall be Berg Micropax 100
position, part number 72546-40x or equivalent
(the "x" depends upon the board thickness).  A
right-angle mount receptacle is shown in figure
25; other mounting methods may be used.  The
mating cable connector, as shown in figure 26
shall be a Berg Micropax 100 position, part
number 72524-001, or equivalent.  Figure 26
shows a cable connector with a straight exit;
other exit configurations may be used.

NOTE – Berg Electronics connectors are examples
of suitable products available commercially.  This
information is given for the convenience of users of
this standard and does not constitute an
endorsement by ANSI, or other publisher of this
standard, of these products.

The receptacle pin assignments shall be as
shown in figure 24; pins labeled n.c. shall not be
connected.  The mating cable connectors shall be
wired as shown in table 16.

These connector specifications shall apply for a
minimum of 1000 mating cycles.

Each pin shall have a ≥ 1 A current capability,
with the total current capability for all pins
simultaneously shall be ≥ 5 A.

The connectors shall provide RFI/EMI shielding
sufficient to pass all appropriate compliance
tests.  When mated, the receptacle housing shall
provide the ground path for the connector
backshell.

Signal attenuation shall be ≤ 0.1 dB.  When
multiple pairs are driven differentially with a 100
ps risetime (20% – 80%) pulse, near end
crosstalk shall be ≤ 12%.

Connector thickness shall be ≤ 0.75".

Jackscrews with 4-40 threads shall be used to
hold the connectors in the mated position.



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

40

16.5  Copper cable specifications

The cable assembly (i.e., cable and connectors)
shall provide differential paths for 46 signals, 23
in each direction.  Cable assembly length is
determined by cable quality and environmental
factors.  All cable assemblies shall meet the
specifications in table 15.

The cable shall have an outside diameter ≤ 0.665
in (16.9 mm) and a bend radius ≤ 6 in (152 mm).

The cable shall provide individual shields, or
equivalent, for each differential path.  These
individual shields shall be floating, i.e., isolated
from each other, from the overall shield, and
from the connector.

There shall be an overall shield.  As shown in
figure 23, at one end of the cable the overall
shield shall be connected to pins 51 and 100

through a total capacitance of 0.4 µf at 50 V.  At
the other end of the cable the overall shield shall
be directly connected to pins 51 and 100.  The
overall shield shall be insulated from the
connector backshell at both ends.

Backshell shield to chassis
ground is through jackscrews

and connector shells

51

100

51

100

End 1 End 2

Chassis
ground

Chassis
ground

Figure 23 – Connecting the overall shield

Table 15 – Copper cable assembly electrical specifications

Parameter Max. Typ. Min. Units Comments

Z0 165 150 135 Ω Differential impedance (tolerance ± 10%)

VXTALK 200 mV•ns Reverse cross talk voltage

Vo 200 mVp-p Single ended peak-to-peak output voltage

VEYE 400 mVp-p Eye pattern peak-to-peak voltage opening

TJITTER 180 ps Deterministic jitter peak-to-peak

Channel Skew TBD ns Channel-to-channel skew

Imbalance Skew 250 ps Imbalance skew within a signal pair

NOTE – All measurements are single-ended rather than differential.

Open Issue – The Imbalance Skew is currently ≤ 6 ns and needs some refinement.  The higher we can tolerate it,
the lower the cable costs are likely to be.  The system skew tolerance is 8.5 ns (see 11.1), and we need to allow
some skew in the PC boards at each end.



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

41

Chassis Ground 51 1 CLOCK_2_In_p
D00_In_p 52 2 CLOCK_2_In_n
D00_In_n 53 3 D08_In_p
D01_In_p 54 4 D08_In_n
D01_In_n 55 5 D09_In_p
D02_In_p 56 6 D09_In_n
D02_In_n 57 7 D10_In_p
D03_In_p 58 8 D10_In_n
D03_In_n 59 9 D11_In_p
D04_In_p 60 10 D11_In_n
D04_In_n 61 11 D12_In_p
D05_In_p 62 12 D12_In_n
D05_In_n 63 13 D13_In_p
D06_In_p 64 14 D13_In_n
D06_In_n 65 15 D14_In_p
D07_In_p 66 16 D14_In_n
D07_In_n 67 17 D15_In_p
C0_In_p 68 18 D15_In_n
C0_In_n 69 19 C2_In_p
C1_In_p 70 20 C2_In_n
C1_In_n 71 21 C3_In_p

CLOCK_In_p 72 22 C3_In_n
CLOCK_In_n 73 23 FRAME_In_p

n.c. 74 24 FRAME_In_n
n.c. 75 25 n.c.
n.c. 76 26 n.c.
n.c. 77 27 FRAME_Out_n

CLOCK_Out_n 78 28 FRAME_Out_p
CLOCK_Out_p 79 29 C3_Out_n

C1_Out_n 80 30 C3_Out_p
C1_Out_p 81 31 C2_Out_n
C0_Out_n 82 32 C2_Out_p
C0_Out_p 83 33 D15_Out_n

D07_Out_n 84 34 D15_Out_p
D07_Out_p 85 35 D14_Out_n
D06_Out_n 86 36 D14_Out_p
D06_Out_p 87 37 D13_Out_n
D05_Out_n 88 38 D13_Out_p
D05_Out_p 89 39 D12_Out_n
D04_Out_n 90 40 D12_Out_p
D04_Out_p 91 41 D11_Out_n
D03_Out_n 92 42 D11_Out_p
D03_Out_p 93 43 D10_Out_n
D02_Out_n 94 44 D10_Out_p
D02_Out_p 95 45 D09_Out_n
D01_Out_n 96 46 D09_Out_p
D01_Out_p 97 47 D08_Out_n
D00_Out_n 98 48 D08_Out_p
D00_Out_p 99 49 CLOCK_2_Out_n

Chassis Ground 100 50 CLOCK_2_Out_p

NOTE – n.c. = no connection allowed

Figure 24 – Receptacle pin assignments

Table 16 – Cable layout

End 1 End 2
Pin p Pin n Signal name Pin p Pin n

52 53 ß D00 99 98
54 55 ß D01 97 96
56 57 ß D02 95 94
58 59 ß D03 93 92
60 61 ß D04 91 90
62 63 ß D05 89 88
64 65 ß D06 87 86
66 67 ß D07 85 84
3 4 ß D08 48 47
5 6 ß D09 46 45
7 8 ß D10 44 43
9 10 ß D11 42 41

11 12 ß D12 40 39
13 14 ß D13 38 37
15 16 ß D14 36 35
17 18 ß D15 34 33
68 69 ß C0 83 82
70 71 ß C1 81 80
19 20 ß C2 32 31
21 22 ß C3 30 29
23 24 ß FRAME 28 27
72 73 ß CLOCK 79 78
1 2 ß CLOCK_2 50 49

99 98 D00 à 52 53
97 96 D01 à 54 55
95 94 D02 à 56 57
93 92 D03 à 58 59
91 90 D04 à 60 61
89 88 D05 à 62 63
87 86 D06 à 64 65
85 84 D07 à 66 67
48 47 D08 à 3 4
46 45 D09 à 5 6
44 43 D10 à 7 8
42 41 D11 à 9 10
40 39 D12 à 11 12
38 37 D13 à 13 14
36 35 D14 à 15 16
34 33 D15 à 17 18
83 82 C0 à 68 69
81 80 C1 à 70 71
32 31 C2 à 19 20
30 29 C3 à 21 22
28 27 FRAME à 23 24
79 78 CLOCK à 72 73
50 49 CLOCK_2 à 1 2

51 ac 100 ac Overall shield 51 100



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

42

A2

A1

A3

A4

A5

#2-56 Thru
2X

A6

A7

#4-40 Thru
2X

Plastic
Tail
Spacer

A8

Pin 1

A9
A10

A11
A12

A15
A14

A13A16

Dimension mm inches

A1 60.20 2.370

A2 41.27 1.625

A3 0.63 Typical 0.025 Typical

A4 6.350 0.250

A5 34.93 1.375

A6 50.80 2.000

A7 11.18 0.440

A8 1.270 0.050

Dimension mm inches

A9 2.540 0.100

A10 3.810 0.150

A11 6.350 0.250

A12 7.620 0.300

A13 9.520 0.375

A14 10.03 0.395

A15 8.130 0.320

A16 Dependent on board thickness

Figure 25 – Receptacle



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

43

B1

B2

B3

B4

B5

B6
B7
B8

#4-40 Male Jackscrew

Pin 1Narrow key side for pin 1 Pin 51

Pin 50 Pin 100

B9

Dimension mm inches

B1 96.28 Max 3.80 Max

B2 43.18 1.70

B3 58.67 Max 2.31 Max

B4 50.80 2.00

B5 25.40 1.00

B6 10.92 0.43

B7 12.70 0.50

B8 19.05 Max 0.750 Max

B9 10.77 0.42

Figure 26 – Cable connector



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

44

Annex A
(informative)

Implementation comments

A.1  4b/5b encoding and decoding

Encoding the 4-bit code groups into 5-bit
transmission codes may be implemented as
shown in the left portion of the example in figure
A.1.  Decoding the 4-bit code from the 5-bit code
may be implemented as shown in the right
portion of figure A.1.  The specification for the
encoding and decoding is in 10.2 and 10.3.

A.2  Frequency differences between Source
and Destination

Although the two ends of a HIPPI-6400 link run at
nominally the same speed, there can be very
slight differences in clock frequency due to
inaccuracy of the crystal oscillators at each end.
If a transmitter is allowed to send an very long
burst of continuous traffic, this will eventually

cause a receiver to overrun if that receiver's
clock is slightly slower than the transmitter's
clock.

To prevent this condition, the length of
continuous data transmission is limited by
inserting non-data micropackets (training
sequences in HIPPI-6400-PH) periodically.  The
frequency of training sequences is determined by
the potential inaccuracy of the oscillators and the
amount of drift the receiver can tolerate.  With ±
200 ppm of frequency error (see 15.1), the total
clock error could be as large as 400 ppm, since
the sender and receiver could be off in opposite
directions.  Allowing a drift of 4 ns before
correction, takes 4 ns x (1/400 ppm) = 10 µs.
Hence, the requirement that HIPPI-6400-PH
transmitters insert retraining sequences at least
every 10 µs.

z

d c b a

4-bit codePrevious
disparity

y T x w

True or
complement

decision

5-bit code

Source

= True/complement gate,
1 = true, 0 = complement

d c b a

4-bit code

Destination

z y T x w
Serial signal line

Figure A.1 – Encode / decode circuit example



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

45

A.3  LCRC parallel implementation

The LCRC specified in 6.6.2 and figure 12 is
based on a bit-by-bit serial implementation.
Parallel implementations may be used as long as
they produce the same results as the serial
example. Tables A.3 and A.4 give equations for
16-bit and 64-bit parallel LCRC implementations,
useful for LCRC generation as shown in figure
A.2.  Table A.5 gives  80-bit parallel equations for
LCRC checking, as shown in figure A.3.  Other
parallel widths may be used, these are just
examples.

For these LCRC equations, c63 through c48 are
the flip-flops shown in figure 12, and the resultant
LCRC control bits.  bn are the bits which must be
delivered to the parallel equation simultaneously.
b0 is the first bit which would have been supplied
to the serial implementation.  The rn bits are the
all 1's seed value, and the intermediate results
from the Partial LCRC Register.

A.3.1  Parallel LCRC generator

Parallel LCRC generation can be accomplished
by cascading 16-bit parallel equations and 64-bit
parallel equations as shown in Figure A.2.  Four
clock periods are used to produce the LCRC
value for a micropacket.  Table A.1 summarizes
the input bits for each clock period.

Table A.1 – Parallel LCRC input bits

Clock
Period

b79:64 b63:00 Mux
output

1 c00–c15 d00.0–d07.7 x'FFFF'

2 c16–c31 d08.0–d15.7 partial

3 c32–c47 d16.0–d23.7 partial

4 c48–c63 d24.0–d31.7 partial

a During the first period, the c00–c15 are
applied to the 16-bit equations, and the 64 bits
d00.0–d07.7 are applied to the 64-bit LCRC
equations.  Note that for this first cycle only, the
multiplexer is set to force x'FFFF' as the 16-bit
partial LCRC value, (i.e., initializing with a
value of all ones).  The register is clocked after
the signals have settled.

b During the second period, c16–c31 are
applied to the 16-bit equations, and d08.0–

d15.7 are applied to 64-bit equations.  The
register is clocked a second time.

c During the third period, c32–c47 are applied
to the 16-bit equations, and d16.0–d23.7 are
applied to the 64-bit equations.  The register is
clocked a third time.

d During the fourth, and final, period, the c48–
c63 values presented to the 16-bit equations
are immaterial (they are just included for
consistency with the LCRC checker), and
d24.0–d31.7 are applied to the 64-bit equations
– the register is not clocked.  After appropriate
settling time, the LCRC is available as c63–c48
(c63 is the msb).

64-bit LCRC
Equations

b63:00

LCRC
c63:48

2:1
Mux

x'FFFF'
Partial LCRC

Register
Clk

r 63:48

16-bit LCRC
Equations

b79:64

Figure A.2 – Parallel LCRC generator example

A.3.2  Parallel LCRC checker

Like the LCRC generator, the LCRC checker uses
four clock periods to produce the LCRC check
value.  The LCRC checker can use a single set of
80-bit equations as shown in figure A.3 rather
than cascading 16-bit and 64-bit equations.  The
difference between the generator and checker is
that the generator does not include the LCRC bits
(c63:48) in the calculation's final step, while the
checker includes them.  A final LCRC value of
x'0000' means no error; x'06A9' means a stomp
code.  The input bits are also summarized in
table A.1, and the time steps are essentially the
same.



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

46

80-bit LCRC
Equations

b79:64

LCRC Check Value
c63:48

2:1
Mux

x'FFFF'
Partial LCRC

Register
Clk

r 63:48

b63:00

Figure A.3 – Parallel LCRC checker example

A.4  ECRC parallel implementation

The ECRC specified in 6.6.3 and figure 13 is
based on a bit-by-bit serial implementation.
Parallel implementations may be used as long as
they produce the same results as the serial
example. Table A.6 gives equations for a 64-bit
parallel ECRC implementation as shown in figure
A.4.  Other parallel widths may be used, this is
just an example.

For these ECRC equations, c47 through c32 are
the flip-flops shown in figure 13, and the resultant
ECRC control bits.  bn are the bits which must be
delivered to the parallel equation simultaneously.
b0 is the first bit which would have been supplied
to the serial implementation.  The rn bits are the
all 1's seed value, and the intermediate results
from the Partial ECRC Register.  Four partial
ECRC registers are required since the ECRC is
continued across multiple micropackets, and the
micropackets from different VC's can be
interleaved.  Four clock periods are used to
produce the ECRC value for a micropacket.
Table A.2 summarizes the input bits for each
clock period.

Table A.2 – Parallel ECRC input bits

Clock
Period

b63:00 Mux
output

1 d00.0–d07.7 (see text)

2 d08.0–d15.7 partial

3 d16.0–d23.7 partial

4 d24.0–d31.7 partial

a During the first period, the 64 bits d00.0–
d07.7 are applied to the 64-bit ECRC
equations.  Note that for this first cycle only,
and only if this is the first micropacket of a
Message, the multiplexer is set to force x'FFFF'
as the 16-bit partial ECRC value, (i.e.,
initializing with a value of all ones).  The
appropriate VC partial register is clocked after
the signals have settled.

b During the second period, d08.0–d15.7 are
applied to 64-bit equations.  The appropriate
register is clocked a second time.

c During the third period, d16.0–d23.7 are
applied to the 64-bit equations.  The
appropriate register is clocked a third time.

d During the fourth, and final, period, d24.0–
d31.7 are applied to the 64-bit equations.  After
appropriate settling time, and without clocking
the register, the ECRC is available as c63–c48
(c63 is the msb).  Then, after capturing this
ECRC, the appropriate register is again clocked
to accumulate all data for the entire message.

A.5  Undetected errors

Simulations have shown that all cases of up to
five simultaneous bit errors in a micropacket are
detected.  Four cases of 4-bit errors are not
detected by LCRC or ECRC errors, but are
detected by other tests, e.g., bad TSEQ values.



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

47

VC3 partial
ECRC Register

Clk

Clk

Clk

64-bit ECRC
Equations

b63:00

ECRC
c47:32

5:1
Mux

x'FFFF'

Clk

r  47:32

VC2 partial
ECRC Register

VC1 partial
ECRC Register

VC0 partial
ECRC Register

Figure A.4 – Parallel ECRC example

Table A.3 – 16-bit LCRC generator equations

Output Exclusive OR these bits together

r63 b79 b75 b71 b68 b67 c63 c59 c55 c52 c51

r62 b78 b74 b70 b67 b66 c62 c58 c54 c51 c50

r61 b77 b73 b69 b66 b65 c61 c57 c53 c50 c49

r60 b76 b72 b68 b65 b64 c60 c56 c52 c49 c48

r59 b75 b71 b67 b64 c59 c55 c51 c48

r58 b79 b75 b74 b71 b70 b68 b67 b66 c63 c59 c58 c55 c54 c52 c51 c50

r57 b78 b74 b73 b70 b69 b67 b66 b65 c62 c58 c57 c54 c53 c51 c50 c49

r56 b77 b73 b72 b69 b68 b66 b65 b64 c61 c57 c56 c53 c52 c50 c49 c48

r55 b76 b72 b71 b68 b67 b65 b64 c60 c56 c55 c52 c51 c49 c48

r54 b75 b71 b70 b67 b66 b64 c59 c55 c54 c51 c50 c48

r53 b74 b70 b69 b66 b65 c58 c54 c53 c50 c49

r52 b73 b69 b68 b65 b64 c57 c53 c52 c49 c48

r51 b79 b75 b72 b71 b64 c63 c59 c56 c55 c48

r50 b78 b74 b71 b70 c62 c58 c55 c54

r49 b77 b73 b70 b69 c61 c57 c54 c53

r48 b76 b72 b69 b68 c60 c56 c53 c52



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

48

Table A.4 – 64-bit LCRC generator equations

Output Exclusive OR these bits together

c63 b63 b59 b55 b52 b51 b44 b43 b41 b37 b36 b35 b31 b30 b28 b21 b15
b14 b12 b11 b8 b7 b5 b0 r63 r62 r60 r59 r56 r55 r53 r48

c62 b62 b58 b54 b51 b50 b43 b42 b40 b36 b35 b34 b30 b29 b27 b20 b14
b13 b11 b10 b7 b6 b4 r62 r61 r59 r58 r55 r54 r52

c61 b61 b57 b53 b50 b49 b42 b41 b39 b35 b34 b33 b29 b28 b26 b19 b13
b12 b10 b9 b6 b5 b3 r61 r60 r58 r57 r54 r53 r51

c60 b60 b56 b52 b49 b48 b41 b40 b38 b34 b33 b32 b28 b27 b25 b18 b12
b11 b9 b8 b5 b4 b2 r60 r59 r57 r56 r53 r52 r50

c59 b59 b55 b51 b48 b47 b40 b39 b37 b33 b32 b31 b27 b26 b24 b17 b11
b10 b8 b7 b4 b3 b1 r59 r58 r56 r55 r52 r51 r49
b63 b59 b58 b55 b54 b52 b51 b50 b47 b46 b44 b43 b41 b39 b38 b37

c58 b35 b32 b28 b26 b25 b23 b21 b16 b15 b14 b12 b11 b10 b9 b8 b6
b5 b3 b2 r63 r62 r60 r59 r58 r57 r56 r54 r53 r51 r50
b62 b58 b57 b54 b53 b51 b50 b49 b46 b45 b43 b42 b40 b38 b37 b36

c57 b34 b31 b27 b25 b24 b22 b20 b15 b14 b13 b11 b10 b9 b8 b7 b5
b4 b2 b1 r63 r62 r61 r59 r58 r57 r56 r55 r53 r52 r50 r49
b61 b57 b56 b53 b52 b50 b49 b48 b45 b44 b42 b41 b39 b37 b36 b35

c56 b33 b30 b26 b24 b23 b21 b19 b14 b13 b12 b10 b9 b8 b7 b6 b4
b3 b1 b0 r62 r61 r60 r58 r57 r56 r55 r54 r52 r51 r49 r48
b60 b56 b55 b52 b51 b49 b48 b47 b44 b43 b41 b40 b38 b36 b35 b34

c55 b32 b29 b25 b23 b22 b20 b18 b13 b12 b11 b9 b8 b7 b6 b5 b3
b2 b0 r61 r60 r59 r57 r56 r55 r54 r53 r51 r50 r48
b59 b55 b54 b51 b50 b48 b47 b46 b43 b42 b40 b39 b37 b35 b34 b33

c54 b31 b28 b24 b22 b21 b19 b17 b12 b11 b10 b8 b7 b6 b5 b4 b2
b1 r60 r59 r58 r56 r55 r54 r53 r52 r50 r49
b58 b54 b53 b50 b49 b47 b46 b45 b42 b41 b39 b38 b36 b34 b33 b32

c53 b30 b27 b23 b21 b20 b18 b16 b11 b10 b9 b7 b6 b5 b4 b3 b1
b0 r59 r58 r57 r55 r54 r53 r52 r51 r49 r48
b57 b53 b52 b49 b48 b46 b45 b44 b41 b40 b38 b37 b35 b33 b32 b31

c52 b29 b26 b22 b20 b19 b17 b15 b10 b9 b8 b6 b5 b4 b3 b2 b0
r63 r58 r57 r56 r54 r53 r52 r51 r50 r48
b63 b59 b56 b55 b48 b47 b45 b41 b40 b39 b35 b34 b32 b25 b19 b18

c51 b16 b15 b12 b11 b9 b4 b3 b2 b1 b0 r63 r60 r59 r57 r52 r51
r50 r49 r48
b62 b58 b55 b54 b47 b46 b44 b40 b39 b38 b34 b33 b31 b24 b18 b17

c50 b15 b14 b11 b10 b8 b3 b2 b1 b0 r63 r62 r59 r58 r56 r51 r50
r49 r48

c49 b61 b57 b54 b53 b46 b45 b43 b39 b38 b37 b33 b32 b30 b23 b17 b16
b14 b13 b10 b9 b7 b2 b1 b0 r62 r61 r58 r57 r55 r50 r49 r48

c48 b60 b56 b53 b52 b45 b44 b42 b38 b37 b36 b32 b31 b29 b22 b16 b15
b13 b12 b9 b8 b6 b1 b0 r63 r61 r60 r57 r56 r54 r49 r48



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

49

Table A.5 – 80-bit LCRC checker equations

Output Exclusive OR these bits together

b79 b75 b71 b68 b67 b60 b59 b57 b53 b52 b51 b47 b46 b44 b37 b31
c63 b30 b28 b27 b24 b23 b21 b16 b15 b14 b13 b12 b9 b7 b5 b4 b2

r63 r62 r61 r60 r57 r55 r53 r52 r50
b78 b74 b70 b67 b66 b59 b58 b56 b52 b51 b50 b46 b45 b43 b36 b30

c62 b29 b27 b26 b23 b22 b20 b15 b14 b13 b12 b11 b8 b6 b4 b3 b1
r63 r62 r61 r60 r59 r56 r54 r52 r51 r49
b77 b73 b69 b66 b65 b58 b57 b55 b51 b50 b49 b45 b44 b42 b35 b29

c61 b28 b26 b25 b22 b21 b19 b14 b13 b12 b11 b10 b7 b5 b3 b2 b0
r62 r61 r60 r59 r58 r55 r53 r51 r50 r48
b76 b72 b68 b65 b64 b57 b56 b54 b50 b49 b48 b44 b43 b41 b34 b28

c60 b27 b25 b24 b21 b20 b18 b13 b12 b11 b10 b9 b6 b4 b2 b1 r61
r60 r59 r58 r57 r54 r52 r50 r49
b75 b71 b67 b64 b63 b56 b55 b53 b49 b48 b47 b43 b42 b40 b33 b27

c59 b26 b24 b23 b20 b19 b17 b12 b11 b10 b9 b8 b5 b3 b1 b0 r60
r59 r58 r57 r56 r53 r51 r49 r48
b79 b75 b74 b71 b70 b68 b67 b66 b63 b62 b60 b59 b57 b55 b54 b53

c58 b51 b48 b44 b42 b41 b39 b37 b32 b31 b30 b28 b27 b26 b25 b24 b22
b21 b19 b18 b15 b14 b13 b12 b11 b10 b8 b5 b0 r63 r62 r61 r60
r59 r58 r56 r53 r48
b78 b74 b73 b70 b69 b67 b66 b65 b62 b61 b59 b58 b56 b54 b53 b52

c57 b50 b47 b43 b41 b40 b38 b36 b31 b30 b29 b27 b26 b25 b24 b23 b21
b20 b18 b17 b14 b13 b12 b11 b10 b9 b7 b4 r62 r61 r60 r59 r58
r57 r55 r52
b77 b73 b72 b69 b68 b66 b65 b64 b61 b60 b58 b57 b55 b53 b52 b51

c56 b49 b46 b42 b40 b39 b37 b35 b30 b29 b28 b26 b25 b24 b23 b22 b20
b19 b17 b16 b13 b12 b11 b10 b9 b8 b6 b3 r61 r60 r59 r58 r57
r56 r54 r51
b76 b72 b71 b68 b67 b65 b64 b63 b60 b59 b57 b56 b54 b52 b51 b50

c55 b48 b45 b41 b39 b38 b36 b34 b29 b28 b27 b25 b24 b23 b22 b21 b19
b18 b16 b15 b12 b11 b10 b9 b8 b7 b5 b2 r63 r60 r59 r58 r57
r56 r55 r53 r50
b75 b71 b70 b67 b66 b64 b63 b62 b59 b58 b56 b55 b53 b51 b50 b49

c54 b47 b44 b40 b38 b37 b35 b33 b28 b27 b26 b24 b23 b22 b21 b20 b18
b17 b15 b14 b11 b10 b9 b8 b7 b6 b4 b1 r63 r62 r59 r58 r57
r56 r55 r54 r52 r49
b74 b70 b69 b66 b65 b63 b62 b61 b58 b57 b55 b54 b52 b50 b49 b48

c53 b46 b43 b39 b37 b36 b34 b32 b27 b26 b25 b23 b22 b21 b20 b19 b17
b16 b14 b13 b10 b9 b8 b7 b6 b5 b3 b0 r62 r61 r58 r57 r56
r55 r54 r53 r51 r48
b73 b69 b68 b65 b64 b62 b61 b60 b57 b56 b54 b53 b51 b49 b48 b47

c52 b45 b42 b38 b36 b35 b33 b31 b26 b25 b24 b22 b21 b20 b19 b18 b16
b15 b13 b12 b9 b8 b7 b6 b5 b4 b2 r63 r61 r60 r57 r56 r55
r54 r53 r52 r50
b79 b75 b72 b71 b64 b63 b61 b57 b56 b55 b51 b50 b48 b41 b35 b34

c51 b32 b31 b28 b27 b25 b20 b19 b18 b17 b16 b13 b11 b9 b8 b6 b3
b2 b1 r61 r59 r57 r56 r54 r51 r50 r49
b78 b74 b71 b70 b63 b62 b60 b56 b55 b54 b50 b49 b47 b40 b34 b33

c50 b31 b30 b27 b26 b24 b19 b18 b17 b16 b15 b12 b10 b8 b7 b5 b2
b1 b0 r63 r60 r58 r56 r55 r53 r50 r49 r48
b77 b73 b70 b69 b62 b61 b59 b55 b54 b53 b49 b48 b46 b39 b33 b32

c49 b30 b29 b26 b25 b23 b18 b17 b16 b15 b14 b11 b9 b7 b6 b4 b1
b0 r63 r62 r59 r57 r55 r54 r52 r49 r48
b76 b72 b69 b68 b61 b60 b58 b54 b53 b52 b48 b47 b45 b38 b32 b31

c48 b29 b28 b25 b24 b22 b17 b16 b15 b14 b13 b10 b8 b6 b5 b3 b0
r63 r62 r61 r58 r56 r54 r53 r51 r48



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

50

Table A.6 – 64-bit ECRC generator / checker equations

Output Exclusive OR these bits together

b63 b59 b55 b51 b50 b48 b43 b42 b40 b37 b35 b34 b32 b31 b29 b26
c47 b22 b20 b19 b18 b17 b13 b11 b10 b7 b6 b4 b3 b2 b1 r45 r43

r42 r39 r38 r36 r35 r34 r33
b63 b62 b59 b58 b55 b54 b51 b49 b48 b47 b43 b41 b40 b39 b37 b36

c46 b35 b33 b32 b30 b29 b28 b26 b25 b22 b21 b20 b16 b13 b12 b11 b9
b7 b5 b4 b0 r45 r44 r43 r41 r39 r37 r36 r32
b62 b61 b58 b57 b54 b53 b50 b48 b47 b46 b42 b40 b39 b38 b36 b35

c45 b34 b32 b31 b29 b28 b27 b25 b24 b21 b20 b19 b15 b12 b11 b10 b8
b6 b4 b3 r47 r44 r43 r42 r40 r38 r36 r35
b63 b61 b60 b59 b57 b56 b55 b53 b52 b51 b50 b49 b48 b47 b46 b45

c44 b43 b42 b41 b40 b39 b38 b33 b32 b30 b29 b28 b27 b24 b23 b22 b17
b14 b13 b9 b6 b5 b4 b1 r46 r45 r41 r38 r37 r36 r33
b62 b60 b59 b58 b56 b55 b54 b52 b51 b50 b49 b48 b47 b46 b45 b44

c43 b42 b41 b40 b39 b38 b37 b32 b31 b29 b28 b27 b26 b23 b22 b21 b16
b13 b12 b8 b5 b4 b3 b0 r45 r44 r40 r37 r36 r35 r32
b61 b59 b58 b57 b55 b54 b53 b51 b50 b49 b48 b47 b46 b45 b44 b43

c42 b41 b40 b39 b38 b37 b36 b31 b30 b28 b27 b26 b25 b22 b21 b20 b15
b12 b11 b7 b4 b3 b2 r47 r44 r43 r39 r36 r35 r34
b60 b58 b57 b56 b54 b53 b52 b50 b49 b48 b47 b46 b45 b44 b43 b42

c41 b40 b39 b38 b37 b36 b35 b30 b29 b27 b26 b25 b24 b21 b20 b19 b14
b11 b10 b6 b3 b2 b1 r46 r43 r42 r38 r35 r34 r33
b59 b57 b56 b55 b53 b52 b51 b49 b48 b47 b46 b45 b44 b43 b42 b41

c40 b39 b38 b37 b36 b35 b34 b29 b28 b26 b25 b24 b23 b20 b19 b18 b13
b10 b9 b5 b2 b1 b0 r45 r42 r41 r37 r34 r33 r32
b58 b56 b55 b54 b52 b51 b50 b48 b47 b46 b45 b44 b43 b42 b41 b40

c39 b38 b37 b36 b35 b34 b33 b28 b27 b25 b24 b23 b22 b19 b18 b17 b12
b9 b8 b4 b1 b0 r44 r41 r40 r36 r33 r32
b57 b55 b54 b53 b51 b50 b49 b47 b46 b45 b44 b43 b42 b41 b40 b39

c38 b37 b36 b35 b34 b33 b32 b27 b26 b24 b23 b22 b21 b18 b17 b16 b11
b8 b7 b3 b0 r43 r40 r39 r35 r32
b56 b54 b53 b52 b50 b49 b48 b46 b45 b44 b43 b42 b41 b40 b39 b38

c37 b36 b35 b34 b33 b32 b31 b26 b25 b23 b22 b21 b20 b17 b16 b15 b10
b7 b6 b2 r47 r42 r39 r38 r34
b55 b53 b52 b51 b49 b48 b47 b45 b44 b43 b42 b41 b40 b39 b38 b37

c36 b35 b34 b33 b32 b31 b30 b25 b24 b22 b21 b20 b19 b16 b15 b14 b9
b6 b5 b1 r47 r46 r41 r38 r37 r33
b63 b59 b55 b54 b52 b47 b46 b44 b41 b39 b38 b36 b35 b33 b30 b26

c35 b24 b23 b22 b21 b17 b15 b14 b11 b10 b8 b7 b6 b5 b3 b2 b1
b0 r47 r46 r43 r42 r40 r39 r38 r37 r35 r34 r33 r32
b62 b58 b54 b53 b51 b46 b45 b43 b40 b38 b37 b35 b34 b32 b29 b25

c34 b23 b22 b21 b20 b16 b14 b13 b10 b9 b7 b6 b5 b4 b2 b1 b0
r46 r45 r42 r41 r39 r38 r37 r36 r34 r33 r32
b61 b57 b53 b52 b50 b45 b44 b42 b39 b37 b36 b34 b33 b31 b28 b24

c33 b22 b21 b20 b19 b15 b13 b12 b9 b8 b6 b5 b4 b3 b1 b0 r47
r45 r44 r41 r40 r38 r37 r36 r35 r33 r32
b60 b56 b52 b51 b49 b44 b43 b41 b38 b36 b35 b33 b32 b30 b27 b23

c32 b21 b20 b19 b18 b14 b12 b11 b8 b7 b5 b4 b3 b2 b0 r46 r44
r43 r40 r39 r37 r36 r35 r34 r32



working draft - HIPPI-6400-PH Rev 1.3, 5/8/97

51

A.6  Cable equalization network

An equalization network having the
characteristics listed in table A.7 is used for each
differential output signals xx_Out_p and
xx_Out_n. The equalization network specified in
16.1 is optimized for a 50 meter, 150 Ω twin-ax
cable. An example of an resistor-capacitor type
equalization network is shown in figure A.5 with a
plot of its frequency response.

C

0

-10

-20

-30

-40

-50

-60

-70

-80

-90

1,000 10,000100101 0.1 0.010.001

Frequency in MHz

Gain in dB

Equalizer Frequency Response

Slope

B

Cb

Ca

Ra

A

Slope

Figure A.7 – Frequency response of RC equalizer network

Table A.7 – Copper cable equalization network

Parameter Max. Typical Min. Units Comments

Ca 4 pF ± 5%

Cb 100 pF ± 5%

Ra 675 Ω ± 5%

Freq(A) -3 dB pole_A @ 2.2 MHz

Freq(B) -17 dB zero_B @ 65 MHz

Freq(C) -23 dB pole_C @ 620 MHz

Slope 20 dB/decade @ 100 KHz


